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Face recognition basedonmulti-classmappingof Fisher scores

Ling Chena,∗, Hong Mana, AraV. Nefianb
aDepartment of Electrical and Computer Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, USA

bMicroprocessor Research Labs, Intel Corporation, SC12-303, 2200 Mission College Blvd., Santa Clara, CA 95052-8119, USA

Received 9 August 2004

Abstract

A new hidden Markov model(HMM) based feature generation scheme is proposed forface recognition(FR) in this paper.
In this scheme, HMM method is used to model classes of face images. A set of Fisher scores is calculated through partial
derivative analysis of the parameters estimated in each HMM. These Fisher scores are further combined with some traditional
features such as log-likelihood and appearance based features to form feature vectors that exploit the strengths of both local
and holistic features of human face.Linear discriminant analysis(LDA) is then applied to analyze these feature vectors for
FR. Performance improvements are observed over stand-alone HMM method and Fisher face method which uses appearance
based feature vectors. A further study reveals that, by reducing the number of models involved in the training and testing stages
of LDA, the proposed feature generation scheme can maintain very high discriminative power at much lower computational
complexity comparing to the traditional HMM based FR system. Experimental results on a public available face database are
provided to demonstrate the viability of this scheme.
� 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

One of the most popular appearance based methods[1–3]
for face recognition(FR) developed in recent years is the
Fisherface method. The Fisherface method performslinear
discriminant analysis(LDA) of feature vectors obtained as
one-dimensional representation of a face image and retrieves
the identity of person based on the nearest-neighbor clas-
sification criterion in the LDA space. This method is in-
sensitive to large variation in lighting direction and facial
expression[2].
Meanwhile, statistical model based methods such ashid-

den Markov model(HMM) have also been proposed for
FR problems[4–8]. This method uses HMM to describe
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the statistical distribution of observation vector sequences
which are generated from small sub-image blocks of face
image. Classification is usually based on Bayesian decision
rule, e.g., maximum a posteriori (MAP) criterion. Compar-
ing with appearance based methods, HMM methods focus
mainly on local characteristics of human faces. These meth-
ods have the flexibility to incorporate information from dif-
ferent instances of faces at different scales and orientations
[5]. However, in these existing statistical model based meth-
ods, only the calculatedlikelihoodof a particular observation
on each established model is used as the measure of close-
ness of the observation towards the corresponding class.
In this work, we present a new feature vector genera-

tion scheme from HMMs. The scheme generates feature
vectors which represent the influence of the model param-
eters of several competing HMMs on the generation of a
particular observation vector sequence. Similar methods
were proposed and used in biosequence analysis, speech

http://www.elsevier.com/locate/patcog
mailto:lchen@stevens.edu
mailto:hman@stevens.edu
mailto:ara.nefian@intel.com


800 L. Chen et al. / Pattern Recognition 38 (2005) 799–811

recognition, and speaker identification[9,14,15]. Unlike pre-
vious schemes which are inherently two-class problem ori-
ented, the proposed scheme in this work is multi-class prob-
lem oriented and the resulting feature vectors appear to be
more effective. We also explore the strengths of both Fish-
erface method and HMM method by combining appearance
based features (as seen in Fisherface approaches) and sta-
tistical model based features together to form new feature
vectors, which may have greater discriminative power over
those used separately. Furthermore, in a typical multi-class
HMM method, one HMM is established for each class of
object (e.g. faces of one person), and a test observation is
compared to all the available classes in order to determine
its identity. In this work we attempt to reduce the number
of HMMs involved in this process and manage to achieve a
comparable recognition performance as when all HMMs are
used. Apparently the model reduction translates to a signif-
icant computational advantage, which effectively improves
the scalability of such statistical model based methods.
The paper is organized as follows: Section 2 discusses

model basedmethods for pattern recognition and the concept
of Fisher scoreused in generation of statistical model based
feature vectors; Section 3 introduces multi-class mapping
to generalize previous schemes for multi-class classifica-
tion problems; Section 4 presents the computation of Fisher
scores in regard to our specific statistical model structure;
Section 5 details the combination scheme for feature vec-
tor generation; Section 6 implements LDA on feature vec-
tors and summarize the proposed system structure; Section
7 discusses the choice of the sampling scheme and HMM
model structure in experiments, including experimental re-
sults and discussion. The paper is concluded with a sum-
mary and possible future research directions.

2. Model based methods and Fisher score

A common scenario of using model based methods for
pattern recognition is that all training and testing observa-
tions are assumed to follow a predefined form of statis-
tical distribution. The parameter estimation of the statisti-
cal model of each class,�̂i , are found by maximizing the
likelihoods of training observations labeled for that class.1

The pdf of an observationO based on the estimated model
parameters isf (O|�̂i ). For aNc-class problem, we have
{�̂i |�̂i ∈ �, i=1, . . . , Nc}, where� is the space of model
parameters. If the form of the statistical distribution and the
parameters estimated are appropriate and precise enough in
describing the distribution pattern of the training observa-
tions, the a posteriori of a testing observation on the trained
model with the same class label should be higher than those
from other trained models. The MAP criterion is then ap-
plied for classification. If the priors of all classes are equal,

1 Definitions of symbols can be found inTable 1.

which is commonly assumed in FR problem, the MAP cri-
terion equals themaximum likelihood(ML) criterion:

i′ = arg max
1� i�Nc

log f (Oq|�̂i ), (1)

whereOq is a query (testing) observation. Therefore the
model structure definition and the parameter estimation have
heavy influence on the effectiveness of this method. The
most successful HMM-based methods for FR include the
1-D HMM [4], the pseudo-2-D HMM[4,5,7], the low com-
plexity 2-D HMM [5,8], and more recently, the embedded
Bayesian networks[6]. In all these variations of HMM struc-
tures, the likelihood score remains the only measurement of
the match between the observation and the model.
RecentlyFisher kernel methodwas proposed by Jaakkola

and Haussler[9] for protein sequence analysis. This ap-
proach is theoretically justified in the framework of maxi-
mum entropy discrimination[10]. It can be considered as
an approximation of the mutual information kernel[11], or
as a method of constructing a posterior probability model
for the class labels[12]. The Fisher kernel method calcu-
lates the difference in generative processes between obser-
vations rather than the likelihood difference. The difference
in the generative processes between observations is repre-
sented by the difference of the vectors composed ofFisher
scores[9]. To elaborate, consider a class of statistical mod-
els f (O|�), � ∈ �. Under certain conditions, this class of
statistical models defines a Riemannian manifold[13]. The
tangent space at point� of the manifold is composed of the
tangent vectors of smooth curves passing through�. Fisher
scores are the gradients of the log-likelihood of an obser-
vation with respect to the parameters of a statistical model.
That is, given the observationO and the model parameters
�={�i |i=1,2, . . . , P }, Fisher score vector of the observa-
tion O with regard to the given model� is defined as

∇�(O)=
[

� log f (O|�)
��1

, . . . ,
� log f (O|�)

��P

]T
. (2)

TheP-dimensional space spanned by Fisher score vector at
point � in � is called thel-representation of the tangent
space. Then the geometrical meaning of Fisher score vec-
tor can be interpreted as the tangent vector at point�. In
a Fisher score vector, the physical meaning of the value of
each component∇�i (O) can be interpreted as the signifi-
cance of the influence of a particular model parameter in
the generation of the observation. Obviously, the value of
the Fisher score vector is influenced by the observationO
and the model parameters�. When the value of� is fixed,
the similarity between two observationsOi andOj can be
calculated by an inner product between two corresponding
Fisher score vectors∇�(Oi ) and∇�(Oj ), scalded by a lo-

cal metricI = EO(∇�(O)
T∇�(O)), which is calledFisher

information matrix. That is, the similarity between two ob-
servations given the model parameters is calculated as

K(Oi ,Oj )= ∇�(Oi )
TI−1∇�(Oj ) (3)
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which is calledFisher kernel[9]. In a binary classification
problem, Fisher kernel method begins with the training of
an HMM by using positive observation sequences from a
given class. This HMM is used to map each positive or
negative observation sequenceOi into a fixed length Fisher
score vector. Fisher score vectors from positive and negative
observation sequences are used to train asupport vector
machine(SVM) with the Fisher kernel function. Each query
observation sequenceO is mapped into a query Fisher score
vector and classification is carried out via the trained SVM.
The resulting discriminant function is:

L(O)=
∑

i:Oi∈H1

�iK(O,Oi )−
∑

i:Oi∈H0

�iK(O,Oi ), (4)

where theLagrange multipliers�i are estimated by positive
and negative examplesOi ;H1,H0 represent observations of
the two competing classes. In fact, besides Fisher scores ob-
tained from the gradients (the first-order partial derivatives)
of the log-likelihood, the zeroth-order partial derivative, i.e.,
the log-likelihood itself can be used independently or jointly
with other features to form fixed dimensional feature vec-
tors. This is discussed in the following section. Moreover,
higher order derivatives can also be incorporated in the pro-
cess of finding discriminative information for classification
[14].

3. Multi-class mapping

In the frameworks proposed by Jaakkola and Haussler[9]
and Fine et al.[15], Fisher scores are computed from the
log-likelihood of a single statistical model representing one
class[15] or both competing classes[9]. However, if two
statistical models are established, and each representing one
of the two competing classes, the feature vectors based on
the Fisher scores from these two models may carry more
discriminative information. Smith and Gales[14] proposed
a method that uses the log ratio of two likelihoods calculated
from two competing models for Fisher score generation.
This scheme was justified for providing a solution to the
wrap-around phenomenon and the realization of the optimal
decision rule[14]. Although these approaches can be used
to handle multi-class problems, the feature vectors in these
approaches are designed intrinsically for binary classifiers
such as the SVM for that the amount of statistical models
involved in the computation of Fisher scores is at most two
that corresponds to two competing classes.
Our approach treats the calculation of Fisher scores as a

process of mapping (or projecting) the observations towards
the derivative space of a particular statistical model. From
this perspective, the Fisher scores used in the previous
schemes can be thought as the results of single- or two-class
mapping processes. It is expected that, through the mapping
of the observations which share the same class membership,
towards the derivative space of an arbitrary statistical model
coming from one of the competing classes, their resulting

Fisher scores will cluster together under a predefined simi-
larity criterion, regardless which class this statistical model
represents. Therefore the distribution patterns of the Fisher
scores from the observations should be highly related in
the derivative space. For binary or multi-class classification
(such as FR), the feature vectors composed of Fisher scores
extracted from the models of more than one competing
classes are likely to carry more discriminative information
than those from the single model. We call this procedure
of mapping a particular observation towards the deriva-
tive spaces of multiple competing statistical models as
multi-class mapping. By introducing multi-class mapping,
not only Fisher scores (the first-order derivatives of log-
likelihood on model parameters), but also log-likelihood
itself (the zeroth-order derivatives of log-likelihood on
model parameters) can be used to form feature vectors (see
Fig. 1).2

4. Fisher scores for diagonal Gaussian HMM

The computation of the Fisher scores depends on the
structure of the statistical model. The statistical model we
choose for FR is a one-dimensional ergodic HMMwhich as-
sumes the observation distribution density as Gaussian with
diagonal covariance matrix (it will be discussed in Section
7.2.2). For a Gaussian HMM, the parameters needed to rep-
resent the model include three components, i.e., the state
transition distributionA, the observation probability distri-
butionB, (Table 1) and the initial states distribution� [16].
In order to completely represent the gradients, all three com-
ponents should be considered. For each positive or nega-
tive observation sequence, the gradients of its log-likelihood
with respect to the parameters of an HMM are defined as
follows:

• The gradients with respect to the state transition distribu-
tion: ∇as̃′′|s̃′ (O), for 1� s̃′, s̃′′ �S.

• The gradients with respect to the Gaussian observa-
tion probability distribution:∇�s̃,i (O) and∇�s̃,i (O), for
1� s̃�S, 1� i�D.

• The gradients with respect to the initial states distribution:
∇�s̃ (O), for 1� s̃�S.

The above defined gradients are calculated as follows:

∇as̃′′|s̃′ (O)=
T∑
t=1

�t (s̃
′, s̃′′) 1

as̃′′|s̃′
,

1� s̃′, s̃′′ �S, (5)

2 The observations used in this figure come from Georgia Tech
Face Database (GTFD) which will be addressed in Section 7.1.
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Fig. 1. Example of multi-class mapping. (a)–(c) are zeroth-order multi-class mappings of three randomly selected observations of subject 1
with respect to the parameters of log-likelihoods of 50HMMs trained for all 50 subjects in Georgia Tech Face Database (GTFD). (d)–(f) are
zeroth-order multi-class mappings of three randomly selected observations of subject 2 with respect to the parameters of log-likelihoods of
50HMMs trained for all 50 subjects in GTFD. From (a)–(c) or (d)–(f), it can be seen that the mapping values of the multi-class mapping of
a particular observation are highly different from each other. Whereas the overall distribution patterns of multi-class mapping value among
observations which share the same class membership, are similar. Also from comparing (a)–(c) with (d)–(f), inter-class difference is obvious
to be noticed.

where

�t (s̃
′, s̃′′)= P(st = s̃′′, st−1 = s̃′|O, �)

which is the probability of being in statẽs′ at time t − 1,
and in statẽs′′ at timet, given the observation sequenceO,
and the model�. This probability can be obtained through
forward–backward procedure[16]

∇�s̃,i (O)=
T∑
t=0

�t (s̃)
ot,i − �s̃,i

�2
s̃,i

,

1� s̃�S, 1� i�D, (6)

where

�t (s̃)= P(st = s̃|O, �)

which is the probability of being in statẽs at time t, given
the observation sequenceO, and the model�. Again, this
probability can be obtained through forward–backward pro-
cedure[16].

∇�s̃,i (O)=
T∑
t=0

�t (s̃)

[
(ot,i − �s̃,i )

2

�3
s̃,i

− 1

�s̃,i

]
,

1� s̃�S, 1� i�D, (7)

∇�s̃ (O)=
�0(s̃)

�s̃
, 1� s̃�S. (8)

A set of typical examples of the Fisher scores are shown
in Fig. 2.
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Table 1
Notation conventions for a Gaussian HMM

t Stept of observation:t = 0,1, . . . , T
s States of HMM:s = 1,2, . . . , S
D Dimension of observation vectors
ot Observation vector at stept : ot ∈ RD

O Observation sequence:O = (o0,o1, . . . ,oT )
A= {ai,j } The state transition probability distribution,

ai,j = as̃′′|s̃′ where s̃′′ = j, s̃′ = i and 1� i, j�S
Ns (�s ,�s ) Gaussian distribution of states with mean

vector�s and diagonal covariance vector�s
B = {b(o|s)} The observation probability distribution,

b(o|s) ∼ Ns (�s ,�s )

� = {�s } The initial state distribution
� = (A,B,�) Model parameters for Gaussian HMM
� Model parameters for a generic

statistical model

5. Combination schemes of Fisher scores for feature
generation

Based on the structure of the statistical model chosen in
our system, we have four types of Fisher scores available
to be used to form feature vectors. They are∇as̃′′|s̃′ , ∇�s̃,i ,∇�s̃,i , and∇�s̃ . The formation of feature vectors depends on
the types of Fisher scores chosen in the mapping procedure
and the mapping procedure itself (i.e., single- or multi-class
mapping). In addition to Fisher scores, the feature vectors
can include other features such as the multi-class mapping
of the zeroth-order partial derivative and appearance based
features:

• The multi-class mapping of the zeroth-order partial
derivative, i.e., log-likelihood: From Fig. 1, we can see
that multi-class mapping of log-likelihood displays strong
intra-class relationship and inter-class difference. This
suggests it should be exploited in the formation of feature
vectors.

• Appearance based features, i.e., vectorization of face im-
age: Appearance based features are commonly used in
LDA for FR. They are fundamentally different from statis-
tical model based features, therefore they may have com-
plemental effect. By combining appearance and statistical
based features, it is possible to obtain feature vectors with
increased discriminative power.

Combinations of various features discussed above are
summarized inTable 2, whereholi stands for holistic (ap-
pearance based) features. The dimensions of the feature vec-
tors for all categories are listed inTable 3, whereNc denotes
the number of classes in the database, andR andC are the
number of rows and number of columns of face images, re-
spectively (refer toTable 1for definitions of other symbols).
As previously mentioned, the similarity between two

Fisher score vectors can be calculated by the Fisher kernel

(refer Eq. (3)), which is the scaled inner product of two
Fisher score vectors. Because thatEO(∇�i (O))= 0, where
i = 1, . . . , P [13], the scaling factorI is effectively the co-
variance matrix, which is symmetric and positive definite,
of Fisher score vectors. Suppose� is an P × P matrix,
consisting of eigenvectors ofI as

� = [�1, . . . ,�P ]

and� is the diagonal matrix of eigenvalues ofI as

� =



�i 0
. . .

0 �P


 ,

then by rewriting the definition of Fisher kernel as

K(Oi ,Oj )= [(��−1/2)T∇�(Oi )]T
× [(��−1/2)T∇�(Oj )], (9)

it is clear thatwhitening transformation[18] is applied
to Fisher score vectors before the inner product is com-
puted. After combining different categories of features
(such as combining Fisher scores with appearance based
features) to generate feature vectors, the dynamic ranges
of different components of the generated feature vectors
may vary significantly. Whereas large dynamic range does
not necessarily mean greater discriminative power. Then
whitening transformation is also needed to decorrelate
different components and normalize their dynamic ranges
before comparing the similarity between them. Unfortu-
nately, because of the limited training data, the covariance
matrix of feature vectors can hardly be obtained. A prac-
tical solution to this problem is assuming independency
among different components of feature vectors and in-
dividually normalizing each component by its mean and
variance.

6. LDA on feature vectors generated from multi-class
and single-class mapping

LDA is a subspace analysis method that projects high-
dimensional data to a lower dimensional subspace which
maximize a predefined class separability criterion. Let the
training samples (in our case the feature vectors generated
under a particular combination scheme listed inTable 2) be
x={xi1, . . . , xiNi |i=1, . . . , Nc}, wherexi1, . . . , xiNi denotes
Ni training samples of classi. In the training stage of LDA,
training samples are used to find theoptimal projection ma-
trix:

Wopt =WldaWpca= [w1,w2, . . . ,wDlda],
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Fig. 2. Example of Fisher scores. (a)–(d) are partial derivatives (pd) ofA, �, �, �, respectively.

Table 2
Feature generation schemes for LDA

Multi-class mappings
m_loglik Multi-class mapping of log-likelihood
m_a Multi-class mapping ofA
m_mu Multi-class mapping of mu
m_sigma Multi-class mapping of sigma
m_pi Multi-class mapping of pi
m_mu_sigma Multi-class mapping of mu and sigma
m_loglik_mu_sigma Multi-class mapping of log-likelihood,

mu, and sigma

Multi-class mappings with holistic(appearance based) features
m_loglik_holi Multi-class mapping of log-likelihood

and holistic (appearance based) features
m_mu_holi Multi-class mapping of mu

and holistic features
m_sigma_holi Multi-class mapping of sigma

and holistic features
m_pi_holi Multi-class mapping of pi and

holistic features
m_mu_sigma_holi Multi-class mapping of mu, sigma

and holistic features
m_loglik_mu_sigma_holi Multi-class mapping of mu, sigma,

log-likelihood and holistic features

Single-class mappings
s_mu Single-class mapping of mu
s_sigma Single-class mapping of sigma
s_mu_sigma Single-class mapping of mu and sigma

where

Wpca= arg max
W

|WTSmW|,

Wlda = arg max
W

|WTWT
pcaSbWpcaW|

|WTWT
pcaSwWpcaW|

andSm, Sb, Sw are themixture scatter matrix, thebetween-
class scatter matrixand thewithin-class scatter matrix, re-
spectively[18]. To avoid the singularity problem ofSw due
to the high dimensions of the training samples, we first
project the training samples to the subspace spanned by
principal components of the mixture scatter matrixSm. Let
y = {yi1, . . . , yiNi |i = 1, . . . , Nc} and ỹ = {ỹi1, . . . , ỹiÑi |i =
1, . . . , Nc} be the projections of the training and testing sam-
ples on the optimal projection matrixWopt, respectively. For
anyỹi

l
, wherei=1, . . . , Nc andl=1, . . . , Ñi , we define the

distance from testing imagel in classi towards the classj as

d(ỹil , j )=min
l′

{‖ỹil − yj
l′ ‖2}, l′ = 1, . . . , Nj ,

where‖y‖2 is theL2-norm of the vectory. Then the identity
of the testing imagel in classi is assigned asj ′ when

j ′ = arg min
j

{d(ỹil , j )}, j = 1, . . . , Nc.

To summarize,Fig. 3describes the use of LDA in the overall
FR system presented in this paper.
To implement LDA method on feature vectors gen-

erated from multi-class mapping when all competing
models are involved in the mapping process, the training
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Table 3
Dimension of feature vectors

Scheme Dimension Scheme Dimension

m_loglik Nc m_loglik_holi Nc + RC
m_mu SDNc m_mu_holi SDNc + RC
m_sigma SDNc m_sigma_holi SDNc + RC
m_pi SNc m_pi_holi SNc + RC
m_mu_sigma 2SDNc m_mu_sigma_holi 2SDNc + RC
m_loglik_mu_sigma 2SDNc +Nc m_loglik_mu_sigma_holi 2SDNc +Nc + RC
m_a S2Nc s_mu SD
s_sigma SD s_mu_sigma 2SD

Fig. 3. Thumbnail of the proposed system.

samples{xi1, . . . , xiNi |i = 1, . . . , Nc} and the testing sam-

ples {x̃i1, . . . , x̃iÑi |i = 1, . . . , Nc} are composed of Fisher

scores of all competing models under a particular combina-
tion scheme (seeFig. 4). The computation of this approach
can be quite intensive, especially when the total number of
all classesNc is very large. One solution to this problem
is to reduce the number of models used in the multi-class
mapping. IfN ′>Nc models are used, the saving of compu-
tation and memory requirement can be very significant. In
this work we examine an approach in whichN ′ HMMs are
selected randomly from the total ofNc HMMs. Once theN ′
HMMs have been chosen, the process of feature vector gen-
eration is the same as depicted inFig. 4. With this approach
there is some randomness being introduced in the perfor-
mance of the whole FR system since different selections of
HMMs can result in different recognition rates (RR).
The computational complexity of∇as̃′′|s̃′ , and∇�s̃ are

O(S4T ), andO(D+S) (referTable 1for the definitions ofS,
T, andD). The computational complexity of∇�s̃,i and∇�s̃,i
areO(S2T + STD). Because usuallyD is much smaller
thanS, then it can be simplified asO(S2T ). Then to find
out the identity of a test image, for multi-class mapping with
feature vector composed of∇as̃′′|s̃′ , ∇�s̃,i , ∇�s̃,i , and∇�s̃ ,

the computational complexities areO(N ′S4T ),O(N ′S2T ),
O(N ′S2T ), andO(N ′(D + S)), whereN ′ is the number
of HMMs involved in the process of multi-class mapping.
The computational complexity for the computing of the
log-likelihood isO(S2T ). Then in traditional HMM based
FR system, suppose there areNc subjects (HMMs) under
consideration, the computational complexity isO(NcS2T ).
Then depends on the value ofN ′, the computational com-

Fig. 4. Feature vector generation for the training (testing) of LDA
when all competing models are involved in multi-class mapping.

plexity of our proposed system can be much less than and at
most equal to the traditional HMM based system. One ex-
ception is∇as̃′′|s̃′ . Due to its overly high computational com-
plexity, we excluded feature vector of category m_a from
our experiments.
The LDA method can also be used with feature vectors

generated from single-class mapping method. One possible
scheme is that the training samples of each class are com-
posed of Fisher scores from single-class mapping where the
statistical model selected is the corresponding HMM of that
class (seeFig. 5). Then the optimal projection matrix is
found based on the training samples and the training projec-
tions are computed based on the optimal projection matrix.
In the testing stage, to compute the distance of a testing im-
age towards classi, the testing feature vector is composed
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Fig. 5. Feature vector generation for the training of LDA in sin-
gle-class mapping.

of Fisher scores from single-class mapping of the testing
image to the HMM of classi. Then the distance of the test-
ing image towards classi is computed. The same kind of
process is repeated to find all distances of the testing image
towards all competing classes, and each testing image is as-
signed to the class which has the smallest distance towards
the testing image. Beside this scheme, we can also treat the
single-class mapping as a special case of multi-class map-
ping in order to reduce the number of models involved in the
training and testing stages. Then above mentioned random
selection of HMM can be used. To differentiate these two
schemes on single-class mapping in our following experi-
ments, we denote s_mu_1, s_simga_1, and s_mu_sigma_1
as feature vectors to be used in the first scheme. And we
denote s_mu_2, s_sigma_2, and s_mu_sigma_2 as feature
vectors to be used in the second scheme (random selection).

7. Experiments

7.1. Database

The face image database used in our experiments is the
Georgia Tech Face Database (GTFD)[17], which consists
of 50 subjects with 15 face images available for each sub-
ject. These face images varies in size, facial expression, il-
lumination, and rotation both in the image plane and per-
pendicular to the image plane. In our experiments, all im-
ages in the database were manually cropped and resized to
112× 92. After the image cropping, most of the complex
background has been excluded. Also, in-plane rotation was
partially eliminated but the out-of-plane rotation was left
untouched. They are further converted to gray level images
for both training and testing purposes (seeFig. 6). In our
experiments, the training set consists of five randomly se-

Fig. 6. Sample images of Georgia Tech Face Database.

lected images of each subject, and the testing set consists of
the remaining 10 images of each subject.

7.2. Training of HMMs

7.2.1. Sampling scheme
To generate the observation vector sequences from the

face image, an 8× 8 sized sliding window is used to scan
a face image with 75% overlap between consecutive steps
from left to right and from top to bottom. The windowed
sub-image blocks are normalized to zero mean and further
transformed by an 8× 8 DCT. Only the 3× 3 lowest fre-
quency coefficients in the DCT domain are used to form the
9-dimensional observation vectors. The size of the observa-
tion vectors is very small comparing to the size of the face
image. The choice of small dimension observation vectors
is appropriate because of the limited training data problem
which is rampant in FR problems. Observation vectors with
high dimension will be problematic in the training of HMM
and the trained models are prone to be over-fitted.

7.2.2. Statistical model structure
As mentioned in Section 4, the model structure chosen for

our system is one-dimensional ergodic HMM with observa-
tion density as Gaussian with diagonal covariance matrix.
The reason for this choice is two-fold: First, because the
out-of-plane rotation was not eliminated from the cropped
images, the performance of the HMMs should be robust to-
wards pose variations. Secondly, for the simplicity of the
Fisher score formulation, the model structure should not be
too complex.
Specifically speaking, the small size of the observation

vector means it does not represent any physical part (such as
eyes, nose, mouth, chin, etc.) of a human face. A particular
observation vector (e.g., a region with flat skin texture), can
appear in many location in the observation vector sequence
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with certain probability. Therefore the HMM is ergodic. We
choose Gaussian HMM rather than mixture Gaussian HMM
to make sure that the transitional statistics embedded among
the observation sequences will be exploited as much as pos-
sible. In an extreme example, if we use only mixture mod-
els with one state, the transition relationship among clus-
ters will be lost. It can also be justified by the size of the
observation vectors. The mixture models are usually more
appropriate for large observation vectors. The small obser-
vation vectors used in our system can come from any part
of a human face. The training algorithm tries to group sim-
ilar observation vectors into clusters described by Gaussian
and then find transition relationships among different clus-
ters. Meanwhile, comparing with more sophisticated model
structures, one-dimensional HMM and diagonal covariance
matrix of Gaussian can reduce the computation for Fisher
scores. The formulae derived on our configuration of HMM
is relatively simple (refer Eqs. (5)–(8)) and can be easily
computed by the standard forward–backward procedure.

7.3. Experimental facts and discussion

7.3.1. Experimental facts
Experiments in our work include three parts. In the first

part, we measure class separability for all categories of fea-
ture vectors on the training data set and testing data set. In
the second part, we test the effectiveness of all those fea-
ture vectors by directly testing the RR. In the third part, we
test the computational efficiency of our proposed FR system
over the traditional HMM based FR systems.
One way to test the effectiveness of our proposed feature

vector generation schemes is to find the class separability
of each scheme. To measure class separability, we adopt the
trace ratio of between-class scatter matrix and within-class
scatter matrix as the criterion[18]

J = trSb
trSw

. (10)

There are totally four trace ratios to be generated for each
feature vector generation scheme, i.e., trace ratios of train-
ing set before LDA and after LDA, trace ratios of testing
set before LDA and after LDA. Testing results are listed in
Table 4. For comparison purposes, trace ratios of holistic
(appearance based) features used by the Fisherface method
are also listed. In each row of the table, the before-LDA
trace ratio and the after-LDA trace ratio are used to repre-
sent the effectiveness of LDA to the improvement of class
separability on both the training set and the testing set. In
each column of the table, trace ratios of different feature
generation schemes are used to exemplify their individual
discriminative power. Because of the randomness of the sec-
ondary scheme of LDA on single-class mapping, the trace
ratios of s_mu_2, s_sigma_2, and s_mu_sigma_2 are the
mean value of trace ratios got from 50 different selections
of HMM used in the single-class mapping.

The other way to test the effectiveness of our proposed
feature vector generation schemes is to directly compute
the RR of each of them.Table 5 lists the recognition re-
sults. The RR of s_mu_2, s_sigma_2, and s_mu_sigma_2
are the mean value of RR got from 50 different selections
of HMM which was used in the single-class mapping. For
comparison purposes, the RR of Fisherface method and
that of stand alone HMMs are listed also.
To implement our proposed method for FR, one impor-

tant issue to be considered is the number of HMMs to be
used in the process of multi-class mapping as discussed in
Section 6. Obviously, the less number of selected HMMs
are involved in the multi-class mapping, the lower compu-
tational complexity the whole FR system will have. Then
in the third part of our experiments, we select feature vec-
tors m_mu and m_sigma to test their RR when different
amount of HMMs are involved in the multi-class mapping
process. For 1<N ′<Nc, we randomly selectN ′ HMMs
and test the recognition rate and this procedure is repeated
for 100 possible selections ofN ′ HMMs. WhenN ′ = 1,
i.e., single-class mapping, we use the second LDA scheme
on single-class mapping. Then each of all the HMMs un-
der consideration is selected once and the RR of the system
based on the model is found. The boxplot (also known as
“box and whisker’’ plot) of the RR on feature vectors m_mu
and m_sigma is illustrated inFig. 7.

7.3.2. Discussion
From Table 4we can see that in most cases, the class

separability of various feature generation schemes will im-
prove after LDA. It is also apparent that the improvements
on training set are always much higher than those on testing
set. This is obviously true because the eigenvectors for the
subspace projection are calculated based on the training set.
The last column ofTable 4deserves more attention, be-

cause the after-LDA trace ratio of testing set reveals the real
effectiveness of feature vectors in term of class separability.
For feature vectors from multi-class mappings, most of their
trace ratios surpass that of holistic (appearance based) fea-
tures. This means feature vectors from multi-class mappings
are expected to have higher discriminative power than that
of holistic features. There is one exception, i.e., m_pi. This
type of feature vectors have a relatively very small trace ra-
tio, which indicates the discriminative power of these feature
vectors is very limited. This is also exemplified by its recog-
nition rate: 16.60%. Ironically, the trace ratio of the training
set of this category is the highest among all the different
schemes. Possible reasons contributing to this phenomenon
are:

• After the sampling scheme, the distribution pattern of the
first observation vector in the observation vector sequence
is highly unpredictable because it represents the first 8×8
image block in the cropped images and it could come
from the hair, the skin, or even the background. Then the
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Table 4
Class separability

Scheme Training set Testing set

Bf LDA Af LDA Bf LDA Af LDA

Fisherface (holistic) 1.0389 140.1155 0.8506 1.7165

Multi-class mappings
m_loglik 2.1197 7.0007 1.2020 3.1653
m_mu 0.9165 355.2917 0.7395 5.9189
m_sigma 1.2122 301.9155 1.0562 6.1072
m_pi 0.3023 4.3231e3 0.1098 0.1098
m_mu_sigma 1.0537 369.2718 0.8846 7.3170
m_loglik_mu_sigma 1.0551 368.4242 0.8859 7.3182

Multi-class mappings with holistic(appearance based) features
m_loglik_holi 1.0438 74.6465 0.8552 2.4675
m_mu_holi 0.9593 452.4430 0.7788 8.6503
m_sigma_holi 1.1458 515.7146 0.9754 5.4968
m_pi_holi 0.8672 930.6172 0.1098 0.1098
m_mu_sigma_holi 1.0504 432.1935 0.8768 9.1218
m_loglik_mu_sigma_holi 1.0515 432.4920 0.8778 9.1229

Single-class mappings
s_mu_1 0.0267 0.6738 0.3492 0.4253
s_sigma_1 1.7094 58.9247 1.2308 1.5347
s_mu_sigma_1 0.4891 77.9655 0.6116 3.6006
s_mu_2 0.9214 116.4136 0.8638 2.3136
s_sigma_2 1.2123 87.2399 1.1399 2.4139
s_mu_sigma_2 1.0739 149.4664 1.1378 3.5251

Table 5
Recognition rates

Scheme RR Scheme RR

Fisherface (holistic) 70.20% HMM 90.80%

Multi-class mappings
Scheme RR Scheme RR
m_loglik 93.60% m_mu 95.80%
m_sigma 95.40% m_pi 16.60%
m_mu_sigma 95.40% m_loglik_mu_sigma 95.40%

Multi-class mappings with holistic(appearance based) features
Scheme RR Scheme RR
m_loglik_holi 70.20% m_mu_holi 96.40%
m_sigma_holi 96.00% m_pi_holi 60.40%
m_mu_sigma_holi 96.60% m_loglik_mu_sigma_holi 96.60%

Single-class mappings
Scheme RR Scheme RR
s_mu_1 45.20% s_mu_2 86.40%
s_sigma_1 47.80% s_sigma_2 89.80%
s_mu_sigma_1 50.80% s_mu_sigma_2 92.52%
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Fig. 7. Boxplot of the RR when various number of HMMs are used for multi-class mapping. Feature vectors used in (a) and (b) are feature
vectors m_mu and m_sigma, respectively.

discriminative power of the initial state distribution itself
is limited.

• Comparing to other parameters of HMM, the amount of
information utilized by the re-estimation of� is limited.
For example, this can be easily seen from the re-estimation
formulae of the HMM, (refer Eqs. (11)–(14)), where
	̄i means the re-estimation of the covariance matrix of
statei

�̄s̃ = �1(s̃), (11)

ās̃′′|s̃′ =
∑T−1
t=1 �t (s̃

′, s̃′′)∑T−1
t=1 �t (s̃′)

, (12)

�̄s̃ =
∑T
t=1 �t (s̃) · ot∑T
t=1 �t (s̃)

, (13)

	̄s̃ =
∑T
t=1 �t (s̃) · (ot − �s̃ )(ot − �s̃ )

′∑T
t=1 �t (s̃)

. (14)

• Due to the limited training data (in our experiments, for
each subject in the database, there are only five randomly
selected images used for training), the estimation of� is
even more unreliable than the other parameters of HMM.

The RR inTable 5also demonstrate the effectiveness of
multi-class mapping. From the table we can see that, with
the exception of m_pi, the performances of all multi-class
mapping schemes (including m_loglik, which is in fact the
multi-class mapping of the zeroth-order derivatives of the
log-likelihood) surpass both the stand alone HMM and Fish-
erface method. Although both Fisherface method and our
proposed system use subspacemethod such as LDA, our pro-
posed method displays substantial improvement in recogni-
tion rate because of the difference between the feature gen-

eration methods. The Fisherface FR system in our experi-
ments is a little bit naive in the sense that images used for
the training and testing were taken directly by the Fisher-
face method without the adjustment on the precise location
of important facial parts such as eyes, nose, and mouth (see
Fig. 6), which is normally solicited by holistic feature based
method such as Fisherface method e.g.,[19,20]. Neverthe-
less, stringent preprocessing for precisely located facial parts
are not solicited in our proposed methods. The testing envi-
ronments of Fisherface method and our proposed methods
are the same, yet the RR of our methods are clearly better
than the Fisherface method. This indicates the flexibility of
the statistical model system on FR.
Moreover, from the last column ofTable 4, we can see

that all trace ratios for feature vectors from Fisher scores of
multi-class mappings are much higher than their counter-
parts in single-class mapping schemes. Also, the same ten-
dency occurs on their RR. This strongly indicates that fea-
ture vectors generated frommulti-classmapping indeed have
more discriminative power over that of single-class map-
ping. For various combination schemes of different kinds of
features, we can see from theTable 4that in many cases,
after combining two or more different categories of features
together, the trace ratio will grow higher after the combi-
nation. For instance, the after-LDA trace ratio of the test-
ing set of m_mu_sigma is higher than those of m_mu and
m_sigma. This is also exemplified by the RR. For example,
the highest recognition rate (96.60%) among all categories
of feature vectors is obtained by m_loglik_mu_sigma_holi,
i.e., the combination of the multi-class mappings of log-
likelihood,∇�s̃,i , ∇�s̃,i , and holistic (appearance based) fea-
tures. But there are some exceptions, e.g., m_loglik_holi and
m_pi_holi. This may be explained by the fact that directions
of projection vectors of the optimal projection matrixWopt
is largely determined by training features which have higher
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after-LDA trace ratio of the training set over that of other
features in the combination. For example, while the after-
LDA trace ratio of the training set of m_loglik is 7.0007,
the after-LDA trace ratio of the training set of holistic fea-
tures (Fisherface method) is 140.1155. This indicates that
when the training set of the whitened combination of these
two kinds of features is used for LDA, features of m_holi
will play much more important roles in the process of de-
termining the optimal projection matrixWopt than those of
m_loglik. However features of m_holi are inferior to fea-
tures of m_loglik in term of discriminative power, noting
that the RR of LDA of m_loglik and Fisherface method are
93.60% and 70.20%, respectively. Then the benefits of the
combination scheme are impaired by the unbalanced contri-
bution of the inferior features, which, in this case, are those
features of m_holi.
For a particular feature combination schemei, we de-

note J itrain and J itest as the training set’s and testing set’s
after-LDA trace ratio. One heuristic to evaluate the poten-

tial of various combination schemes is that, ifJ itrain/J
j
train

andJ itest/J
j
test are roughly at the same scale, the combina-

tion of features from schemei and j is very likely to have

higher after-LDA trace ratio of testing set, e.g.,J ijtest�J itest
andJ ijtest�J

j
test. This means more discriminative power is

expected.
From Fig. 7, we can see that as the number of HMMs

involved in the multi-class mapping goes up, the RR go
up rapidly and surpass the recognition rate of traditional
HMM based FR system. For example, we can see from the
figure that when there are only five HMMs involved in the
multi-class mapping, the lowest recognition rates for m_mu
and m_sigma are above 92%, which are higher than that of
the RR of traditional HMM based FR system (90.80%). In
Fig. 7, we can see that even the computational complexity
is lowered by a factor of 10 (N ′ = 5, Nc = 50), the RR
of the proposed FR system based on only five randomly
selected HMMs are always higher than that of traditional
HMM based FR system. This validates the effectiveness of
the proposed FR system in the perspective of computational
complexity.
In summary, our experimental results suggest:

• Multi-class mapping of log-likelihood can be used to form
feature vectors and have higher recognition rate over those
of Fisherface method and stand alone HMMs.

• Multi-class mappings of Fisher scores such as∇�s̃,i ,∇�s̃,i
and their combinations have higher RR than Fisherface
method and stand alone HMMs. Also, they are superior
over their counterparts of single-class mappings.

• Combinations of holistic features with Fisher scores∇�s̃,i ,∇�s̃,i can result in even higher RR.
• While obtaining higher RR, the computational complexity
of LDA on multi-class mapping of Fisher score method
can be much lower than that of the traditional HMM based
FR system.

8. Conclusion

In this paper, we developed a new feature vector gen-
eration scheme based on multi-class mapping of Fisher
scores. We presented the derivation of Fisher scores for
one-dimensional ergodic HMM with diagonal Gaussian ob-
servation density. Conventional appearance based features
were combined with statistical model based features and
overall performance improvement is observed. The effec-
tiveness of the proposed feature vector generation scheme is
testified by higher RR and lower computational complexity.
The proposed method is quite generic and we expect it can
be further explored in areas of pattern recognition where
statistical models are involved such as speech recognition
and texture analysis.
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