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Abstract

A new hidden Markov modegHMM) based feature generation scheme is proposefafog recognitionFR) in this paper.
In this scheme, HMM method is used to model classes of face images. A set of Fisher scores is calculated through partial
derivative analysis of the parameters estimated in each HMM. These Fisher scores are further combined with some traditional
features such as log-likelihood and appearance based features to form feature vectors that exploit the strengths of both local
and holistic features of human fadgnear discriminant analysig§LDA) is then applied to analyze these feature vectors for
FR. Performance improvements are observed over stand-alone HMM method and Fisher face method which uses appearance
based feature vectors. A further study reveals that, by reducing the number of models involved in the training and testing stages
of LDA, the proposed feature generation scheme can maintain very high discriminative power at much lower computational
complexity comparing to the traditional HMM based FR system. Experimental results on a public available face database are
provided to demonstrate the viability of this scheme.
© 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction the statistical distribution of observation vector sequences

which are generated from small sub-image blocks of face

One of the most popular appearance based mefied} image. Classification is usually based on Bayesian decision
for face recognition(FR) developed in recent years is the rule, e.g., maximum a posteriori (MAP) criterion. Compar-

Fisherface method. The Fisherface method perfdimesir ing with appearance based methods, HMM methods focus

discriminant analysi§LDA) of feature vectors obtained as  mainly on local characteristics of human faces. These meth-
one-dimensional representation of a face image and retrievesods have the flexibility to incorporate information from dif-
the identity of person based on the nearest-neighbor clas- ferent instances of faces at different scales and orientations
sification criterion in the LDA space. This method is in- [5]. However, in these existing statistical model based meth-
sensitive to large variation in lighting direction and facial ~ods, only the calculatelikelihoodof a particular observation

expressiori2]. on each established model is used as the measure of close-
Meanwhile, statistical model based methods suchids ness of the observation towards the corresponding class.
den Markov mode(HMM) have also been proposed for In this work, we present a new feature vector genera-

FR problems[4-8]. This method uses HMM to describe tion scheme from HMMs. The scheme generates feature
_ vectors which represent the influence of the model param-
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recognition, and speaker identificatif14,15] Unlike pre- which is commonly assumed in FR problem, the MAP cri-
vious schemes which are inherently two-class problem ori- terion equals thenaximum likelihoodML) criterion:
ented, the proposed scheme in this work is multi-class prob- | i N
lem oriented and the resulting feature vectors appear to be’ = &9, &% log f(Oql6;), @
more effective. We also explore the strengths of both Fish- o
erface method and HMM method by combining appearance where Oq is a query (testing) observation. Therefore the
based features (as seen in Fisherface approaches) and stgnodel structure definition and the parameter estimation have
tistical model based features together to form new feature heavy influence on the effectiveness of this method. The
vectors, which may have greater discriminative power over Most successful HMM-based methods for FR include the
those used separately. Furthermore, in a typical multi-class 1-D HMM [4], the pseudo-2-D HMM4,5,7], the low com-
HMM method, one HMM is established for each class of Plexity 2-D HMM [5,8], and more recently, the embedded
object (e.g. faces of one person), and a test observation is Bayesian networki]. In all these variations of HMM struc-
compared to all the available classes in order to determine tures, the likelihood score remains the only measurement of
its identity. In this work we attempt to reduce the number the match between the observation and the mode!.
of HMMs involved in this process and manage to achieve a  RecentlyFisher kernel methowas proposed by Jaakkola
comparable recognition performance as when all HMMs are and Hausslef9] for protein sequence analysis. This ap-
used. Apparently the model reduction translates to a signif- Proach is theoretically justified in the framework of maxi-
icant computational advantage, which effectively improves Mum entropy discriminatioff10]. It can be considered as
the scalability of such statistical model based methods. ~ @n approximation of the mutual information keriiel], or

The paper is organized as follows: Section 2 discusses &S @ method of constructing a posterior probability model
model based methods for pattern recognition and the conceptfor the class label§12]. The Fisher kernel method calcu-
of Fisher scoreused in generation of statistical model based lates the difference in generative processes between obser-
feature Vectors; Section 3 introduces mu|ti_c|ass mapp|ng VationS rathel' than the ||ke||h00d diﬂerence. The diffel‘ence
to generalize previous schemes for multi-class classifica- in the generative processes between observations is repre-
tion problems; Section 4 presents the computation of Fisher Sented by the difference of the vectors composeHistier
scores in regard to our specific statistical model structure; scores[9]. To elaborate, consider a class of statistical mod-
Section 5 details the combination scheme for feature vec- €IS f(O16), 0 € ©. Under certain conditions, this class of
tor generation; Section 6 implements LDA on feature vec- Statistical models defines a Riemannian manifalg]. The
tors and summarize the proposed system structure; Sectiontangent space at poifitof the manifold is composed of the
7 discusses the choice of the sampling scheme and HMM tangent vectors of smooth curves passing thro@gfisher
model structure in experiments, including experimental re- Scores are the gradients of the log-likelihood of an obser-
sults and discussion. The paper is concluded with a sum- vation with respect to the parameters of a statistical model.
mary and possible future research directions. That is, given the observatidd and the model parameters

0={0;1i=1,2,..., P}, Fisher score vector of the observa-
tion O with regard to the given moddl is defined as

dlog f(Ol9) 3 log f(OIH)]T

A common scenario of using model based methods for 001 o0p
pattern recognition is that all training and testing observa- The P-dimensional space spanned by Fisher score vector at
tions are assumed to follow a predefined form of statis- point 0 in ® is called thel-representation of the tangent
tical distribution. The parameter estimation of the statisti- space. Then the geometrical meaning of Fisher score vec-
cal model of each clas¥;, are found by maximizing the  tor can be interpreted as the tangent vector at p@irh
likelihoods of training observations labeled for that class.  a Fisher score vector, the physical meaning of the value of
The pdf of an observatio® based on the estimated model each componen¥y, (O) can be interpreted as the signifi-
parameters isf (O|0;). For a Nc-class problem, we have  cance of the influence of a particular model parameter in
{0;10; € ®, i=1, ..., Nc}, where® is the space of model  the generation of the observation. Obviously, the value of
parameters. If the form of the statistical distribution and the the Fisher score vector is influenced by the observafion
parameters estimated are appropriate and precise enough irand the model parametefis When the value of is fixed,
describing the distribution pattern of the training observa- the similarity between two observatio®s andO; can be
tions, the a posteriori of a testing observation on the trained calculated by an inner product between two corresponding
model with the same class label should be higher than those Fisher score vectorsy(O;) and Vp(O;), scalded by a lo-
from other trained models. The MAP criterion is then ap- ¢a| metric/ = EO(V(,(O)TVG(O)), which is calledFisher

plied for classification. If the priors of all classes are equal, information matrix That is, the similarity between two ob-
servations given the model parameters is calculated as

2. Model based methods and Fisher score

Vp(0) = [ &)

1 Definitions of symbols can be found Fable 1 K(0;,0)) = Vo(Oi)Tl_lvo(Oj) 3)
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which is calledFisher kernel[9]. In a binary classification
problem, Fisher kernel method begins with the training of
an HMM by using positive observation sequences from a
given class. This HMM is used to map each positive or
negative observation sequer@g into a fixed length Fisher
score vector. Fisher score vectors from positive and negative
observation sequences are used to traisupport vector
maching(SVM) with the Fisher kernel function. Each query
observation sequen€2is mapped into a query Fisher score
vector and classification is carried out via the trained SVM.
The resulting discriminant function is:

Z©)= ) %K©O0)- Y KO0, (4

i:0;,eH1 i:0;eHy

where the_agrange multipliersy; are estimated by positive
and negative exampl&€3;; H1, Hg represent observations of
the two competing classes. In fact, besides Fisher scores ob-
tained from the gradients (the first-order partial derivatives)
of the log-likelihood, the zeroth-order partial derivative, i.e.,
the log-likelihood itself can be used independently or jointly
with other features to form fixed dimensional feature vec-
tors. This is discussed in the following section. Moreover,
higher order derivatives can also be incorporated in the pro-
cess of finding discriminative information for classification
[14].

3. Multi-class mapping

In the frameworks proposed by Jaakkola and Hau$8]er
and Fine et al[15], Fisher scores are computed from the
log-likelihood of a single statistical model representing one
class[15] or both competing classg9]. However, if two
statistical models are established, and each representing on
of the two competing classes, the feature vectors based on
the Fisher scores from these two models may carry more
discriminative information. Smith and Galgk4] proposed
a method that uses the log ratio of two likelihoods calculated
from two competing models for Fisher score generation.
This scheme was justified for providing a solution to the
wrap-around phenomenon and the realization of the optimal
decision rule[14]. Although these approaches can be used
to handle multi-class problems, the feature vectors in these
approaches are designed intrinsically for binary classifiers
such as the SVM for that the amount of statistical models
involved in the computation of Fisher scores is at most two
that corresponds to two competing classes.

Our approach treats the calculation of Fisher scores as a
process of mapping (or projecting) the observations towards
the derivative space of a particular statistical model. From
this perspective, the Fisher scores used in the previous
schemes can be thought as the results of single- or two-class
mapping processes. It is expected that, through the mapping
of the observations which share the same class membership;
towards the derivative space of an arbitrary statistical model
coming from one of the competing classes, their resulting
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Fisher scores will cluster together under a predefined simi-
larity criterion, regardless which class this statistical model
represents. Therefore the distribution patterns of the Fisher
scores from the observations should be highly related in
the derivative space. For binary or multi-class classification
(such as FR), the feature vectors composed of Fisher scores
extracted from the models of more than one competing
classes are likely to carry more discriminative information
than those from the single model. We call this procedure
of mapping a particular observation towards the deriva-
tive spaces of multiple competing statistical models as
multi-class mapping. By introducing multi-class mapping,
not only Fisher scores (the first-order derivatives of log-
likelihood on model parameters), but also log-likelihood
itself (the zeroth-order derivatives of log-likelihood on
model garameters) can be used to form feature vectors (see
Fig. 1).

4. Fisher scores for diagonal Gaussian HMM

The computation of the Fisher scores depends on the
structure of the statistical model. The statistical model we
choose for FR is a one-dimensional ergodic HMM which as-
sumes the observation distribution density as Gaussian with
diagonal covariance matrix (it will be discussed in Section
7.2.2). For a Gaussian HMM, the parameters needed to rep-
resent the model include three components, i.e., the state
transition distributionA, the observation probability distri-
bution B, (Table 1 and the initial states distribution [16].

In order to completely represent the gradients, all three com-
ponents should be considered. For each positive or nega-

éive observation sequence, the gradients of its log-likelihood

with respect to the parameters of an HMM are defined as
follows:

e The gradients with respect to the state transition distribu-
tion: Vagn (0), for 1<5/, §”<S.

e The gradients with respect to the Gaussian observa-
tion probability distribution:Vuii(O) and Ve, (0), for
1<5<S, 1<i<D.

e The gradients with respect to the initial states distribution:
Vr:(0), for 1<s5<S.

The above defined gradients are calculated as follows:

T
IR
t=1
1<5§,57<S,

S;/’ S://)

)

asn 5

Vag//lf/ (O) =

®)

2The observations used in this figure come from Georgia Tech
Face Database (GTFD) which will be addressed in Section 7.1.



802 L. Chen et al. / Pattern Recognition 38 (2005) 799-811

x 10° x 10*
-0.95 -9

-1.05

-11r

log likelihood
log likelihood

-1.15

-1.2

0 10 20 30 40 50 0 10 20 30 40 50
(a) class index (d) class index

x 10° x 104
-0.95 -9

1k

-1.05

-1.1r

log likelihood

-1.15

-1.2

0 10 20 30 40 50 0 10 20 30 40 50
(b) class index (e) class index

x 10°
-0.95

-1.05

-11r

log likelihood

-1.15 ¢

0 10 20 30 40 50 0 10 20 30 40 50
(c) class index () class index

Fig. 1. Example of multi-class mapping. (a)—(c) are zeroth-order multi-class mappings of three randomly selected observations of subject 1
with respect to the parameters of log-likelihoods of 50 HMMs trained for all 50 subjects in Georgia Tech Face Database (GTFD). (d)—(f) are
zeroth-order multi-class mappings of three randomly selected observations of subject 2 with respect to the parameters of log-likelihoods of
50 HMMs trained for all 50 subjects in GTFD. From (a)—(c) or (d)—(f), it can be seen that the mapping values of the multi-class mapping of
a particular observation are highly different from each other. Whereas the overall distribution patterns of multi-class mapping value among
observations which share the same class membership, are similar. Also from comparing (a)—(c) with (d)—(f), inter-class difference is obvious
to be noticed.

where which is the probability of being in stateat timet, given
the observation sequen€® and the model. Again, this
probability can be obtained through forward—backward pro-
which is the probability of being in staté at timer — 1, cedure[16].

and in statg” at timet, given the observation sequen®e

&G =P(si =5, 5-1=510,7)

and the modell. This probability can be obtained through v o) — T [ ori = Mg,i)z 1
forward—backward proceduf&6] 05,1 (0) = X(:) 71(5) [ T
1=l KN 5
a = s 1<5<S, 1<i<D %
N N 18 s O XV, Il x N
Vs (0)=) yt(s)%,
= o Ve =29 s 8
1<5<S, 1<i<D, (6) s ( )_Ts’ <5<S. ®)
where

A set of typical examples of the Fisher scores are shown
7 = P(s; =5|0, 1) in Fig. 2
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Table 1
Notation conventions for a Gaussian HMM

t
S

Stepr of observationr =0, 1, ..., T
States of HMM:s =1,2,..., S

D Dimension of observation vectors

[ Observation vector at step: o, € RP

O Observation sequenc@ = (0p, 01, . - ., or)
A={a; ;} The state transition probability distribution,

aj j = aznz wheres” = j, 5" =i and 1<i, j < S
Gaussian distribution of statewith mean
vector ug and diagonal covariance vectey

The observation probability distribution,

b(ols) ~ N s (ps, 65)

Ns (us, 05)

B = {b(0ls)}

= {m} The initial state distribution
A= (A, B, ) Model parameters for Gaussian HMM
0 Model parameters for a generic

statistical model

5. Combination schemes of Fisher scores for feature
generation

Based on the structure of the statistical model chosen in
our system, we have four types of Fisher scores available
to be used to form feature vectors. They &r@,/lf,, VMJ,

Vs ;» andVy.. The formation of feature vectors depends on

the‘types of Fisher scores chosen in the mapping proceduref

and the mapping procedure itself (i.e., single- or multi-class

mapping). In addition to Fisher scores, the feature vectors
can include other features such as the multi-class mapping
of the zeroth-order partial derivative and appearance based
features:

The multi-class mapping of the zeroth-order partial
derivative i.e., log-likelihood From Fig. 1, we can see
that multi-class mapping of log-likelihood displays strong
intra-class relationship and inter-class difference. This
suggests it should be exploited in the formation of feature
vectors.

Appearance based featuré<., vectorization of face im-
age Appearance based features are commonly used in
LDA for FR. They are fundamentally different from statis-
tical model based features, therefore they may have com-
plemental effect. By combining appearance and statistical
based features, it is possible to obtain feature vectors with
increased discriminative power.

Combinations of various features discussed above are
summarized iffable 2 whereholi stands for holistic (ap-
pearance based) features. The dimensions of the feature vec
tors for all categories are listed Ttable 3 whereN¢ denotes
the number of classes in the database, Rraohd C are the
number of rows and number of columns of face images, re-
spectively (refer tdable 1for definitions of other symbols).

As previously mentioned, the similarity between two
Fisher score vectors can be calculated by the Fisher kernel

803

(refer Eqg. (3)), which is the scaled inner product of two
Fisher score vectors. Because thigj(Vy, (0)) = 0, where
i=1,..., P [13], the scaling factot is effectively the co-
variance matrix, which is symmetric and positive definite,
of Fisher score vectors. Suppodeis an P x P matrix,
consisting of eigenvectors dfas

O=[¢1,...,9pl
and A is the diagonal matrix of eigenvalues loas

Py 0

0 ip

then by rewriting the definition of Fisher kernel as

K(0;,0)) = (@A"Y Tvp0n1"

x (@AY Tvy0))1, ©9)

it is clear thatwhitening transformatior{18] is applied

to Fisher score vectors before the inner product is com-
puted. After combining different categories of features
(such as combining Fisher scores with appearance based
eatures) to generate feature vectors, the dynamic ranges
of different components of the generated feature vectors
may vary significantly. Whereas large dynamic range does
not necessarily mean greater discriminative power. Then
whitening transformation is also needed to decorrelate
different components and normalize their dynamic ranges
before comparing the similarity between them. Unfortu-
nately, because of the limited training data, the covariance
matrix of feature vectors can hardly be obtained. A prac-
tical solution to this problem is assuming independency
among different components of feature vectors and in-
dividually normalizing each component by its mean and
variance.

6. LDA on feature vectors generated from multi-class
and single-class mapping

LDA is a subspace analysis method that projects high-
dimensional data to a lower dimensional subspace which
maximize a predefined class separability criterion. Let the
training samples (in our case the feature vectors generated
under a particular combination scheme listedable 2 be
x={xj, ..., Xli-v,- li=1,..., Nc}, wherexi, ..., Xiv,v denotes
N; training samples of classIn the training stage of LDA,
training samples are used to find thgtimal projection ma-

trix:

Wopt = WigaWpca= [W1, W2, ..., Wp.l.



804

L. Chen et al. / Pattern Recognition 38 (2005) 799-811

10 20

state

30 40

Fig. 2. Example of Fisher scores. (a)—(d) are partial derivatives (p#) of o, 7, respectively.

x 10%

8

6 £
< o

2 2

0

40
() (©)

4

2 d Co—7
=} — \
g kI LNETREN S 5
Sl Ly ‘\&§§$§i§§‘- o
2 N e TS z

2 NN “@@ S5

4 —

10 40

Wimg,
2
Slor, 00 pake
(b) (d)
Table 2

Feature generation schemes for LDA

Multi-class mappings

m_loglik Multi-class mapping of log-likelihood
m_a Multi-class mapping oA

m_mu Multi-class mapping of mu
m_sigma Multi-class mapping of sigma

m_pi Multi-class mapping of pi

m_mu_sigma
m_loglik_mu_sigma

Multi-class mapping of mu and sigma
Multi-class mapping of log-likelihood,
mu, and sigma

Multi-class mappings with holistiGappearance bas¢deatures

m_loglik_holi Multi-class mapping of log-likelihood
and holistic (appearance based) features
m_mu_holi Multi-class mapping of mu
and holistic features
m_sigma_holi Multi-class mapping of sigma
and holistic features
m_pi_holi Multi-class mapping of pi and

holistic features
Multi-class mapping of mu, sigma
and holistic features
m_loglik_mu_sigma_holi Multi-class mapping of mu, sigma,
log-likelihood and holistic features

m_mu_sigma_holi

Single-class mappings

s_mu Single-class mapping of mu
s_sigma Single-class mapping of sigma
S_mu_sigma Single-class mapping of mu and sigma

where

Wpca= arg n\)vaX|WTSmW [

IWTW JoSoWpcaW |
IWTW JcaSwWpcaW |

W|gq = arg max
Ida g e

andSm, Sy, Sw are themixture scatter matrixthe between-
class scatter matriand thewithin-class scatter matrixe-
spectively[18]. To avoid the singularity problem &, due

to the high dimensions of the training samples, we first
project the training samples to the subspace spanned by
principal components of the mixture scatter majx. Let
y:{y’l,...,lel_|i =1,..., Nc} andy:{y’l,...,y;\?ﬁ =

1, ..., N¢} be the projections of the training and tesfing sam-
ples on the optimal projection mati¥ opt, respectively. For
anyyi, wherei=1,..., Ncand/=1, ..., N;, we define the
distance from testing imaden classi towards the classas

d@). j)= n;,in{uv;' —y)ll2}. I'=1.....N;.

wherelly| 2 is the L>-norm of the vectoy. Then the identity
of the testing imagé in classi is assigned ag’ when

j' =arg n}in{d(y;', N}, j=1,...,Nc.

To summarizeFig. 3describes the use of LDA in the overall
FR system presented in this paper.

To implement LDA method on feature vectors gen-
erated from multi-class mapping when all competing
models are involved in the mapping process, the training
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Table 3
Dimension of feature vectors
Scheme Dimension Scheme Dimension
m_loglik N¢ m_loglik_holi Nc+ RC
m_mu SDN¢ m_mu_holi SDN¢+ RC
m_sigma SDN¢ m_sigma_holi SDN¢+ RC
m_pi SNc m_pi_holi SNc¢+ RC
m_mu_sigma 8DN¢ m_mu_sigma_holi &DN¢+ RC
m_loglik_mu_sigma 8DN¢ + N¢ m_loglik_mu_sigma_holi 8&DN¢+ Nc+ RC
m_a S2Ne s_mu SD
S_sigma SD S_mu_sigma 8D
. " Ffsher Srqres Feature Vectors
Training b - Observation = HMM | c [ Fisher | Generation ["geature LDA fipa Projection | | Projection LDA
Images Vector Sequence o | 7 Scores 'l Vectors Matrix Projections

Fisher Scores

Feature Vectors

Distance

¥ i Generation jecti Comparison
Testing Observation | Computation Fisher Feature Projection LDA " Identities
Images Vector Sequence Scores Vectors Projections

Fig. 3. Thumbnail of the proposed system.

samples{x. ..., Xy |i = 1,..., N¢} and the testing sam-

ples {x’, )”(lN|z =1,..., Nc} are composed of Fisher
scores of all coﬁ1peting models under a particular combina-
tion scheme (seEig. 4). The computation of this approach
can be quite intensive, especially when the total number of
all classesN¢ is very large. One solution to this problem
is to reduce the number of models used in the multi-class
mapping. IfN’ < Nc models are used, the saving of compu-
tation and memory requirement can be very significant. In
this work we examine an approach in whisti HMMs are
selected randomly from the total 8 HMMs. Once theN’
HMMs have been chosen, the process of feature vector gen-
eration is the same as depictedHig. 4. With this approach
there is some randomness being introduced in the perfor-
mance of the whole FR system since different selections of
HMMs can result in different recognition rates (RR).

The computational complexity o‘Vag,,‘E,, and Vp. are

O0(S*T),andO(D+S) (referTable 1for the definitions of,
T, andD). The computational complexity 6f,,. . and Ve, ;

are O(S2T + ST D). Because usuallyp is much smaller
than§ then it can be simplified a@(SZT). Then to find
out the identity of a test image, for multi-class mapping with
feature vector composed @fas,,‘g,, Vi v Vo i and Vp,,
the computational complexities aB(N’S*T), O (N’ S?T),
O(N'S2T), and O(N'(D + S)), where N’ is the number
of HMMs involved in the process of multi-class mapping.
The computational complexity for the computing of the
log-likelihood is O(SZT). Then in traditional HMM based
FR system, suppose there ave subjects (HMMs) under
consideration, the computational complexit)()$NcS2T).
Then depends on the value af, the computational com-

Training images of
all subjects

OBSERVATION
VECTOR SEQUENCE
GENERATION

_ [ FISHER SCORE
| COMPUTATION

FEATURE VECTOR
GENERATION

-

FISHER SCORE
COMPUTATION

Fig. 4. Feature vector generation for the training (testing) of LDA
when all competing models are involved in multi-class mapping.

plexity of our proposed system can be much less than and at
most equal to the traditional HMM based system. One ex-
ception isvag,,‘f, . Due to its overly high computational com-
plexity, we excluded feature vector of category m_a from
our experiments.

The LDA method can also be used with feature vectors
generated from single-class mapping method. One possible
scheme is that the training samples of each class are com-
posed of Fisher scores from single-class mapping where the
statistical model selected is the corresponding HMM of that
class (seerig. 5. Then the optimal projection matrix is
found based on the training samples and the training projec-
tions are computed based on the optimal projection matrix.
In the testing stage, to compute the distance of a testing im-
age towards clasis the testing feature vector is composed
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subject N
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Fig. 5. Feature vector generation for the training of LDA in sin- Fig. 6. Sample images of Georgia Tech Face Database.

gle-class mapping.

lected images of each subject, and the testing set consists of

of Fisher scores from single-class mapping of the testing the remaining 10 images of each subject.
image to the HMM of class Then the distance of the test-
ing image towards classis computed. The same kind of
process is repeated to find all distances of the testing image
towards all competing classes, and each testing image is as-7.2.1. Sampling scheme

signed to the class which has the smallest distance towards To generate the observation vector sequences from the
the testing image. Beside this scheme, we can also treat theface image, an & 8 sized sliding window is used to scan
single-class mapping as a special case of multi-class map-a face image with 75% overlap between consecutive steps
ping in order to reduce the number of models involved in the from left to right and from top to bottom. The windowed
training and testing stages. Then above mentioned random sub-image blocks are normalized to zero mean and further
selection of HMM can be used. To differentiate these two transformed by an & 8 DCT. Only the 3x 3 lowest fre-
schemes on single-class mapping in our following experi- quency coefficients in the DCT domain are used to form the
ments, we denote s_mu_1, s_simga_1, and s_mu_sigma_19-dimensional observation vectors. The size of the observa-
as feature vectors to be used in the first scheme. And we tion vectors is very small comparing to the size of the face
denote s_mu_2, s _sigma_2, and s_mu_sigma_2 as featurémage. The choice of small dimension observation vectors
vectors to be used in the second scheme (random selection).is appropriate because of the limited training data problem
which is rampant in FR problems. Observation vectors with
high dimension will be problematic in the training of HMM
and the trained models are prone to be over-fitted.

7.2. Training of HMMs

7. Experiments

7.2.2. Statistical model structure

As mentioned in Section 4, the model structure chosen for

The face image database used in our experiments is theour system is one-dimensional ergodic HMM with observa-
Georgia Tech Face Database (GTHDY], which consists tion density as Gaussian with diagonal covariance matrix.
of 50 subjects with 15 face images available for each sub- The reason for this choice is two-fold: First, because the
ject. These face images varies in size, facial expression, il- out-of-plane rotation was not eliminated from the cropped
lumination, and rotation both in the image plane and per- images, the performance of the HMMs should be robust to-
pendicular to the image plane. In our experiments, all im- wards pose variations. Secondly, for the simplicity of the
ages in the database were manually cropped and resized toFisher score formulation, the model structure should not be
112 x 92. After the image cropping, most of the complex too complex.
background has been excluded. Also, in-plane rotation was  Specifically speaking, the small size of the observation
partially eliminated but the out-of-plane rotation was left vector means it does not represent any physical part (such as
untouched. They are further converted to gray level images eyes, nose, mouth, chin, etc.) of a human face. A particular
for both training and testing purposes (d€g. 6). In our observation vector (e.g., a region with flat skin texture), can
experiments, the training set consists of five randomly se- appear in many location in the observation vector sequence

7.1. Database
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with certain probability. Therefore the HMM is ergodic. We The other way to test the effectiveness of our proposed
choose Gaussian HMM rather than mixture Gaussian HMM feature vector generation schemes is to directly compute
to make sure that the transitional statistics embedded amongthe RR of each of themTlable 5lists the recognition re-
the observation sequences will be exploited as much as pos-sults. The RR of s_mu_2, s_sigma_2, and s_mu_sigma_2
sible. In an extreme example, if we use only mixture mod- are the mean value of RR got from 50 different selections
els with one state, the transition relationship among clus- of HMM which was used in the single-class mapping. For
ters will be lost. It can also be justified by the size of the comparison purposes, the RR of Fisherface method and
observation vectors. The mixture models are usually more that of stand alone HMMs are listed also.

appropriate for large observation vectors. The small obser-  To implement our proposed method for FR, one impor-
vation vectors used in our system can come from any part tant issue to be considered is the number of HMMs to be
of a human face. The training algorithm tries to group sim- used in the process of multi-class mapping as discussed in
ilar observation vectors into clusters described by Gaussian Section 6. Obviously, the less number of selected HMMs
and then find transition relationships among different clus- are involved in the multi-class mapping, the lower compu-
ters. Meanwhile, comparing with more sophisticated model tational complexity the whole FR system will have. Then
structures, one-dimensional HMM and diagonal covariance in the third part of our experiments, we select feature vec-
matrix of Gaussian can reduce the computation for Fisher tors m_mu and m_sigma to test their RR when different
scores. The formulae derived on our configuration of HMM amount of HMMs are involved in the multi-class mapping
is relatively simple (refer Egs. (5)—(8)) and can be easily process. For ¥ N’ < N¢, we randomly selecv/ HMMs
computed by the standard forward—backward procedure. and test the recognition rate and this procedure is repeated
for 100 possible selections ¥’ HMMs. When N’ = 1,

i.e., single-class mapping, we use the second LDA scheme
on single-class mapping. Then each of all the HMMs un-
der consideration is selected once and the RR of the system
based on the model is found. The boxplot (also known as
“box and whisker” plot) of the RR on feature vectors m_mu
and m_sigma is illustrated iRig. 7.

7.3. Experimental facts and discussion

7.3.1. Experimental facts

Experiments in our work include three parts. In the first
part, we measure class separability for all categories of fea-
ture vectors on the training data set and testing data set. In
the second part, we test the effectiveness of all those fea-
ture vectors by directly testing the RR. In the third part, we
test the computational efficiency of our proposed FR system
over the traditional HMM based FR systems.

7.3.2. Discussion
From Table 4we can see that in most cases, the class
One way to test the effectiveness of our proposed feature separability of various feature generation schemes will im-
prove after LDA. It is also apparent that the improvements

vector generation schemes is to find the class separability - ; .
. on training set are always much higher than those on testing
of each scheme. To measure class separability, we adopt the

. . o set. This is obviously true because the eigenvectors for the
trace ratio of between-class scatter matrix and within-class L .-
. L subspace projection are calculated based on the training set.
scatter matrix as the criteridii8]

The last column offable 4deserves more attention, be-
trsy cause the after-LDA trace ratio of testing set reveals the real
= Sy’ (10) effectiveness of feature vectors in term of class separability.
For feature vectors from multi-class mappings, most of their
There are totally four trace ratios to be generated for each trace ratios surpass that of holistic (appearance based) fea-
feature vector generation scheme, i.e., trace ratios of train- tures. This means feature vectors from multi-class mappings
ing set before LDA and after LDA, trace ratios of testing are expected to have higher discriminative power than that
set before LDA and after LDA. Testing results are listed in  of holistic features. There is one exception, i.e., m_pi. This
Table 4 For comparison purposes, trace ratios of holistic type of feature vectors have a relatively very small trace ra-
(appearance based) features used by the Fisherface methodio, which indicates the discriminative power of these feature
are also listed. In each row of the table, the before-LDA Vectors is very limited. This is also exemplified by its recog-
trace ratio and the after-LDA trace ratio are used to repre- nition rate: 16.60%. Ironically, the trace ratio of the training
sent the effectiveness of LDA to the improvement of class set of this category is the highest among all the different
separability on both the training set and the testing set. In schemes. Possible reasons contributing to this phenomenon
each column of the table, trace ratios of different feature are:
generation schemes are used to exemplify their individual
discriminative power. Because of the randomness of the sec-e After the sampling scheme, the distribution pattern of the
ondary scheme of LDA on single-class mapping, the trace first observation vector in the observation vector sequence
ratios of s_mu_2, s_sigma_2, and s_mu_sigma_2 are the is highly unpredictable because it represents the fixs88
mean value of trace ratios got from 50 different selections  image block in the cropped images and it could come
of HMM used in the single-class mapping. from the hair, the skin, or even the background. Then the
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Table 4
Class separability
Scheme Training set Testing set

Bf LDA Af LDA Bf LDA Af LDA
Fisherface (holistic) 1.0389 140.1155 0.8506 1.7165
Multi-class mappings
m_loglik 2.1197 7.0007 1.2020 3.1653
m_mu 0.9165 355.2917 0.7395 5.9189
m_sigma 1.2122 301.9155 1.0562 6.1072
m_pi 0.3023 4.3231e3 0.1098 0.1098
m_mu_sigma 1.0537 369.2718 0.8846 7.3170
m_loglik_mu_sigma 1.0551 368.4242 0.8859 7.3182
Multi-class mappings with holistiGappearance bas¢deatures
m_loglik_holi 1.0438 74.6465 0.8552 2.4675
m_mu_holi 0.9593 452.4430 0.7788 8.6503
m_sigma_holi 1.1458 515.7146 0.9754 5.4968
m_pi_holi 0.8672 930.6172 0.1098 0.1098
m_mu_sigma_holi 1.0504 432.1935 0.8768 9.1218
m_loglik_mu_sigma_holi 1.0515 432.4920 0.8778 9.1229
Single-class mappings
s_mu_1 0.0267 0.6738 0.3492 0.4253
s_sigma_1 1.7094 58.9247 1.2308 1.5347
s_mu_sigma_1 0.4891 77.9655 0.6116 3.6006
s mu_2 0.9214 116.4136 0.8638 2.3136
s_sigma_2 1.2123 87.2399 1.1399 2.4139
s_mu_sigma_2 1.0739 149.4664 1.1378 3.5251
Table 5
Recognition rates
Scheme RR Scheme RR
Fisherface (holistic) 70.20% HMM 90.80%
Multi-class mappings
Scheme RR Scheme RR
m_loglik 93.60% m_mu 95.80%
m_sigma 95.40% m_pi 16.60%
m_mu_sigma 95.40% m_loglik_mu_sigma 95.40%
Multi-class mappings with holistiGappearance basgdeatures
Scheme RR Scheme RR
m_loglik_holi 70.20% m_mu_holi 96.40%
m_sigma_holi 96.00% m_pi_holi 60.40%
m_mu_sigma_holi 96.60% m_loglik_mu_sigma_holi 96.60%
Single-class mappings
Scheme RR Scheme RR
s_mu_1 45.20% s_mu_2 86.40%
s_sigma_1 47.80% s_sigma_2 89.80%
s_mu_sigma_1 50.80% s_mu_sigma_2 92.52%
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Fig. 7. Boxplot of the RR when various number of HMMs are used for multi-class mapping. Feature vectors used in (a) and (b) are feature
vectors m_mu and m_sigma, respectively.

discriminative power of the initial state distribution itself — eration methods. The Fisherface FR system in our experi-

is limited. ments is a little bit naive in the sense that images used for
e Comparing to other parameters of HMM, the amount of the training and testing were taken directly by the Fisher-
information utilized by the re-estimation afis limited. face method without the adjustment on the precise location

For example, this can be easily seen from the re-estimation of important facial parts such as eyes, nose, and mouth (see
formulae of the HMM, (refer Egs. (11)—(14)), where Fig. 6), which is normally solicited by holistic feature based

2; means the re-estimation of the covariance matrix of method such as Fisherface method §10,20] Neverthe-

statei less, stringent preprocessing for precisely located facial parts
are not solicited in our proposed methods. The testing envi-
Ty =7105), (11 ronments of Fisherface method and our proposed methods
T—1e s s are the same, yet the RR of our methods are clearly better
G5 = Zt:Tl - ¢S ), 12) than the Fisherface method. This indicates the flexibility of
=1 76N the statistical model system on FR.
Moreover, from the last column ofable 4 we can see
. Z,Tzl 11 (8) - O (13) that all trace ratios for feature vectors from Fisher scores of
s Z;T—l 7 3) multi-class mappings are much higher than their counter-
- parts in single-class mapping schemes. Also, the same ten-
_ Zthl 79, (3) - (0 — ) (0r — tz)’ dency occurs on their RR. This strongly indicates that fea-
iy = T " - (14) ture vectors generated from multi-class mapping indeed have
Y= more discriminative power over that of single-class map-

e Due to the limited training data (in our experiments, for PINg. For various combination schemes of different kinds of
each subject in the database, there are only five randomly features, we can see from tfiable 4that in many cases,
selected images used for training), the estimation &f after combining two or more different categories of features
even more unreliable than the other parameters of HMM. together, the trace ratio will grow higher after the combi-

nation. For instance, the after-LDA trace ratio of the test-

The RR inTable 5also demonstrate the effectiveness of ing set of m_mu_sigma is higher than those of m_mu and
multi-class mapping. From the table we can see that, with m_sigma. This is also exemplified by the RR. For example,
the exception of m_pi, the performances of all multi-class the highest recognition rate (#9%) among all categories
mapping schemes (including m_loglik, which is in fact the of feature vectors is obtained by m_loglik_mu_sigma_holi,
multi-class mapping of the zeroth-order derivatives of the i.e., the combination of the multi-class mappings of log-
log-likelihood) surpass both the stand alone HMM and Fish- likelihood, V. ,, Vg, ;, and holistic (appearance based) fea-
erface method. Although both Fisherface method and our tures. But there are some exceptions, e.g., m_loglik_holi and
proposed system use subspace method such as LDA, our pro-m_pi_holi. This may be explained by the fact that directions
posed method displays substantial improvement in recogni- of projection vectors of the optimal projection matk¥opt

tion rate because of the difference between the feature gen-is largely determined by training features which have higher
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after-LDA trace ratio of the training set over that of other 8. Conclusion

features in the combination. For example, while the after-

LDA trace ratio of the training set of m_loglik is 7.0007, In this paper, we developed a new feature vector gen-
the after-LDA trace ratio of the training set of holistic fea- eration scheme based on multi-class mapping of Fisher
tures (Fisherface method) is 140.1155. This indicates that scores. We presented the derivation of Fisher scores for
when the training set of the whitened combination of these one-dimensional ergodic HMM with diagonal Gaussian ob-
two kinds of features is used for LDA, features of m_holi servation density. Conventional appearance based features
will play much more important roles in the process of de- were combined with statistical model based features and
termining the optimal projection matri opt than those of overall performance improvement is observed. The effec-
m_loglik. However features of m_holi are inferior to fea- tiveness of the proposed feature vector generation scheme is
tures of m_loglik in term of discriminative power, noting testified by higher RR and lower computational complexity.
that the RR of LDA of m_loglik and Fisherface method are The proposed method is quite generic and we expect it can
93.60% and 70.20%, respectively. Then the benefits of the be further explored in areas of pattern recognition where
combination scheme are impaired by the unbalanced contri- statistical models are involved such as speech recognition

bution of the inferior features, which, in this case, are those and texture analysis.

features of m_holi.

For a particular feature combination schemeve de-
note Jtirain
after-LDA trace ratio. One heuristic to evaluate the poten-

tial of various combination schemes is that,Jff,;/ Jiain

and Jtiest/Jt’ést are roughly at the same scale, the combina-
tion of features from schemieandj is very likely to have

higher after-LDA trace ratio of testing set, e.gilq> Jiast

and Jili> Jibse This means more discriminative power is
expected.

From Fig. 7, we can see that as the number of HMMs
involved in the multi-class mapping goes up, the RR go
up rapidly and surpass the recognition rate of traditional
HMM based FR system. For example, we can see from the
figure that when there are only five HMMs involved in the
multi-class mapping, the lowest recognition rates for m_mu
and m_sigma are above 92%, which are higher than that of
the RR of traditional HMM based FR system (90.80%). In
Fig. 7, we can see that even the computational complexity
is lowered by a factor of 10N’ =5, N¢ = 50), the RR
of the proposed FR system based on only five randomly
selected HMMs are always higher than that of traditional
HMM based FR system. This validates the effectiveness of
the proposed FR system in the perspective of computational
complexity.

In summary, our experimental results suggest:

e Multi-class mapping of log-likelihood can be used to form
feature vectors and have higher recognition rate over those
of Fisherface method and stand alone HMMs.

o Multi-class mappings of Fisher scores suctvas., Vo, ,
and their combinations have higher RR than Fisherface
method and stand alone HMMs. Also, they are superior
over their counterparts of single-class mappings.

o Combinations of holistic features with Fisher sco‘V@Qi ,

Vg;; can result in even higher RR.

 While obtaining higher RR, the computational complexity
of LDA on multi-class mapping of Fisher score method
can be much lower than that of the traditional HMM based
FR system.
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