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ABSTRACT

The embedded hidden Markov model (HMM) is a statis-
tical model that can be used in many pattern recognition
and computer vision applications. This model inherits the
partial size invariance of the standard HMM, and, due to
its pseudo two-dimensional structure, is able to model two-
dimensional data such as images, better than the standard
HMM. In this paper we describe the maximum likelihood
training for the continuous mixture embedded HMM and
present the performance of this model for face detection
and recognition. The experimental results are compared
with other approaches to face detection and recognition.

1. INTRODUCTION

This embedded HMM or pseudo two dimensional HMM,
first introduced for character recognition by Kuo and Agazzi
[1], has a large potential for many pattern recognition appli-
cations that involve two dimensional data. One very impor-
tant application where the embedded HMM can be used is
face modeling for detection and recognition. Face detection
and recognition systems have many applications varying
from identification systems (control the access of people into
restricted areas) to multimedia applications (face recogni-
tion from video or from a photography album). Previous
attempts to use HMM for face modeling include the left-to-
right HMM [2], [3] and the HMM with end-of-line states
described in [4]. In this paper we describe the maximum
likelihood training of the embedded HMM and present a
method for face detection and recognition using this model.

2. THE EMBEDDED HMM

An embedded HMM is a generalization of a HMM where
each state in a one-dimensional HMM is itself an HMM.
Thus, an embedded HMM consists of a set of super states
along with a set of embedded states. The super states model
the two-dimensional data along one direction, while the em-
bedded HMMs model the data along the other direction.
Specifically, the elements of an embedded HMM are:

1. A set of Ny super states.

2. The initial super state probability distribution, Il =
{m0,:}, where mo; is the probability of being in super
state ¢ at time zero.

3. The state transition matrix between the super states,
Ao = {ao,i; }, where aq,;; is the probability of making
a transition from super state ¢ to super state j.

4. In an embedded HMM, each super state k is itself a
standard HMM defined by the parameter set AF =
(I1%, A% B*), where IT¥ is the initial state probabil-
ity distribution of the embedded states, A¥ is the
state transition matrix for the embedded states, and
B” is the probability distribution matrix of the obser-
vations. With a continuous mizture embedded HMM,
the observations are characterized by a continuous
probability density function, which are taken to be
finite Gaussian mixtures of the form,
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where ¢ is the mixture coefficient for the mth mix-
ture in state i of super state k, and
N (O i1 ¥, UL ) is a Gaussian density with a mean
vector pf,, and covariance matrix U¥,,. Note that for
the observation vector Oy, , we have two subscripts,
to and ti. We denote the sequence of observation
vectors as Oy = {Oyy,;| 0 < ¢1 < T1}. and the
two-dimensional sequence of observation vectors as
O = {0t0| 0<tp <To}.

Using a shorthand notation, an embedded HMM is defined
by the triplet A = (IIo, Ag, A¥).

3. MAXIMUM LIKELITHOOD TRAINING OF
THE EMBEDDED HMM

In this section we describe the re-estimation equations for
the maximum likelihood training algorithms of the embed-
ded HMM. Because the evaluation algorithms play an im-
portant role in the understanding of the re-estimation equa-
tion we will also discuss them briefly.

3.1. The evaluation algorithms

An efficient algorithm for the computation of P(O|)) is ob-
tained if the forward variable for the sequence Qg, O1,...,Og,



is defined as:
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where q?o is the super state corresponding to O,. The for-
ward variable oy, (i) describes the probability of the partial
sequence Og, Oy, ..., O, and super state ¢ given the model

A. Therefore, P(O|)\) can be computed as:

P(ON) =Y an, (i)

all i

The forward variable oy, (i) is computed iteratively from its
previous values and the probability of O¢, given the super
state i, P(O¢,|qf, =i, \):
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It is important to notice that, as with the embedded Viterbi
algorithm [1], the delay introduced by the computation of
the forward algorithm can be significantly reduced if a par-
allel architecture is used. In such a parallel implementation,
all P(Oy,|qf, = i,\) can be computed at the same time us-
ing the forward backward algorithms for the standard HMM
[6]. Similarly a backward variable can be defined and used
to compute P(O|A).

3.2. The re-estimation algorithm

Let O = {O',...,0",...,0%}, be a set of R indepen-
dent two-dimensional observation vectors. The objective
of the training algorithm is to iteratively search for the
set of parameters of the embedded HMM that maximize
P(OJX) =[], P(O"|)), which is equivalent to maximizing
the auxiliary function:

QA X) 0|A ZP -a\)log P(O,ql\) (1)

with respect to A. The re-estimated parameters of the
embedded HMM are derived using a variant of the EM
algorithm to minimize the auxiliary function in Equation
1. The re-estimated parameters are given by the following
equations:
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Figure 1: Embedded HMM for face
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In the above equations, q?o,tl, qtlo,tl and ki, represent
the super state, the embedded state and the mixture corre-
sponding to the observation vector Oy, . The above vari-
ables are obtained from the forward and backward variables

as described in more detail in [6].

4. THE FACE MODEL

The structure of the embedded HMM used for both face
detection and recognition is illustrated in Figure 1. The
observation sequence for a face image is formed from image
blocks that are extracted by scanning the image from left-
to-right and top-to-bottom. Adjacent image blocks overlap
in the vertical direction, and in the horizontal direction.



Experiment 1 Experiment 2
DR | FA DR | FA
Embedded HMM
2D - DCT [ OLT% [ iz | 912% | tomstoom
KLT 96.3% | smereroos | 91-5% | Tosseront
HMM
2D-DCT 79.2% w 68.3% 252,526:4,480
KLT 81.3% | srmsstes | 126% | msymesaso

Table 1: Comparison of the detection rate (DR) and false
alarms (FA) in different experiments obtained using the
standard HMM and the embedded HMM

The observation vectors consist of either four KLT coeffi-
cients (corresponding to the largest eigenvalues) or six 2D-
DCT coefficients (corresponding to a 2 x 3 window around
the lowest frequencies in the 2D DCT domain) that corre-
spond to each 8 x 10 pixel block (6 x 8 overlap). The blocks
are extracted from the training images by scanning them
from left to right and top to bottom.

5. FACE DETECTION

To detect a face in a test image, first a face model is trained
using the doubly embedded Viterbi segmentation followed
by the maximum likelihood training procedure described
above. The initial set of parameters are obtained from uni-
formly segmenting the face images according to the struc-
ture of states and super states of the embedded HMM. The
training images consist of 400 frontal faces from the ORL
database [4]. The embedded HMM face model obtained
after training is used to compute the doubly embedded
Viterbi score for each rectangular pattern in a test image.
The rectangular patterns for which the likelihood score ex-
ceeds a fixed threshold are taken as faces. To reduce the
number of false alarms, the face candidates that overlap
with rectangular patterns of higher score are discarded. The
above face detection algorithm has been tested in two ex-
periments using both KLT and 2D-DCT based features. In
the first experiment the test images consists of 144 images
in the MIT database showing frontal faces with variations
in illumination and size (by a factor of two). In the second
experiment the test images consist in 432 images from the
same database where images showing faces with variations
in pose (rotations in the image plane) where added. Ta-
ble 1 presents the detection results in both experiments
using the embedded HMM and the standard HMM. The
false alarms are reported along with the total number of
patterns extracted from the test images. It is important
to notice that for both the embedded HMM and the stan-
dard HMM the KLT features performed better than the
2D-DCT. This is due to the optimal decorrelation proper-
ties of the KLT, and to the fact that the KLT basis was
obtained from face images. From the above experiments, it
is clear that the embedded HMM outperforms the standard
HMM for face detection.

Approach Recognition
Rate
1 Auto Association and 20%
Classification NN [7]
2 | Dynamic Link Matching [8] 80%
3 Eigenface [9] 80%
1 HMM 2] 85%
5 VFR model [10] 92.5%
6 | HMM end-of-line-states [4] 90-95%
7 PDBNN [11] 96%
8 Convolutional NN [12] 96.2%
9 Embedded HMM 100%

Table 2: Comparison of the face recognition rate for differ-
ent approaches tested on the ORL database

6. FACE RECOGNITION

The face recognition approach described in this paper was
tested on images from the ORL database and a new database
from Georgia Tech. The observation vectors are obtained
in the same manner as discussed for detection, using either
2D-DCT or KLT based coefficients. Different instances of
the same subject in the database are used to train the em-
bedded HMM corresponding to one face. To recognize a
face, the doubly embedded Viterbi score is computed for
the test image given the models corresponding to the faces
in the database, and the highest score is selected to reveal
the identity of the test image.

Table 2 compares some of the face recognition approaches
described in the literature and tested on the same database.
As shown in this table, the embedded HMM produces the
best face recognition results on the ORL database. The
perfect recognition rate is obtained when each state of the
embedded HMM was modeled by a mixture of three Gaus-
sian density functions. We have also tested our approach
on a new database built at Georgia Tech. The database
contains 450 images of 50 people (15 images per person)
both males and females from different ages and races. Most
of the images were taken in two or three sessions over a
period of three months such that changes in illumination
and facial applearnce become more evident. Each image
in the database shows one face in a complex background.
The faces have strong variations in size and orientation (ro-
tations in the image plane and the plane perpendicular to
the image plane) and facial expressions. We have tested
our system using 10 images in the training set for each per-
son and use the remaining five face images for testing. The
images in both the testing and training set were manually
croped. The recognition results, using six DCT-based ob-
servation vectors and three mixtures per state show 87%
correct recognition and outperform the eigenface method
(40 eigenfaces) by almost 20%. (correct recognition 68%).
Figure 2 shows some of the recognition results on the Geor-
gia Tech database. The crossed images represent misclassifi-
cations while the rest of the images represent correct recog-
nition. Table 3 compares different HMM-based methods
for face recognition in terms of recognition rate (tested on
the ORL database) and complexity (in terms of additions).



Figure 2: Face recognition results tested on the Georgia
Tech database

Recog. Complexity

Rate (additions)
HMM [2] 85% N;To
HMM [4] 90-95% o NI TLT
Emb. HMM | 98% No (N1 + N T

Table 3: Comparison of the face recognition rate and nu-
merical complexity for different HMM-based approaches

To make a fair comparison with Samaria’s model, which
uses a Gaussian density for state modeling, the recognition
rates in Table 3, were obtained by removing the mixture
components. In this case the recognition rate of the em-
bedded HMM drops from 100% to 98%, but still achieves
the best performance among the HMM-based approaches.
Although more complex than the standard HMM, the em-
bedded HMM is less complex than the HMM with end of
line states. Furthermore, due to the parallel structure of
the embedded Viterbi algorithm used for recognition, the
time delay introduced by the embedded HMM can be sig-
nificantly decreased and approaches the delay found in the
standard HMM.

7. CONCLUSIONS

This paper describes the maximum likelihood training for a
continuous mixture embedded HMM, and demonstrates the
efficiency of this model for face detection and recognition.
The embedded HMM, due to its pseudo two-dimensional
structure, outperforms the standard HMM and the HMM
with end of line states for face detection and recognition
where data is two dimensional.

Unlike the HMM with end of line states, the embedded

HMM provides a natural set of initial parameters for the
training, and fast training and recognition algorithms that
can also be implemented in a parallel architecture.

Compared with the template-based methods for face de-
tection and recognition, the embedded HMM is more flexi-
ble with respect to variations in scale, natural deformations
and allows for a faster implementation of the face detection
algorithm due to the breaking of the face templates in im-
age blocks which are processed to obtain the observation
vectors.
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