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ABSTRACT

This paper describes a hierarchical Bayesian network used for seg-
menting desert images and detecting off road drivable corridors for
autonomous navigation. Unlike the embedded hidden Markov model
the Bayesian network presented in this paper can successfully ac-
count for natural dependencies between neighboring pixels in both
image dimensions making it more suitable for a larger class of im-
ages. The method described here was developed within the Stanford
racing team that won the DARPA Grand Challenge 2005 after driv-
ing over 130 miles autonomously in the Nevada desert.

Index Terms— Mobile robot motion-planning, image segmen-
tation, hidden Markov models

1. INTRODUCTION

Intelligent vehicles able to navigate autonomously in various envi-
ronments have numerous applications ranging from indoor robotics
to unmanned commercial and military vehicles and interplanetary
exploration. Remarkable progress towards achieving autonomous
navigation in off road corridors was achieved recently during the
DARPA Grand Challenge Race [1] won by the Stanford racing
team [2]. The work presented in this paper grows out of the race
team work where the authors were part of the team that developed a
generative road segmentation model [3]. We had wanted a way to
give the model road boundary and horizon semantics but were not
able to complete the work before the code freeze deadline. This pa-
per completes this intended work. In order to robustly and accurately
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Fig. 1. The overall software system or the robot. This paper focuses
on the vision modules that feed into the vision mapper.

determine road and off road corridors, the overall navigation system
(Figure 1) incorporates information from several sensors including

GPS, laser and cameras. Laser sensors can very accurately deter-
mine the road at short range but power considerations limit our laser
range to 20 meters. The role of the vision system is to sample the
near visual scene where the lasers identify drivable terrain and use
that region as a ”seed” to segment drivable areas in the rest of the
image. A Gaussian mixture model over the color space [3] was used
to do this scene segmentation. In this approach the parameters of the
model are trained from the indicated nearby ”seed” region and the
remaining pixels in the image are assigned to drivable surface based
on their color space distance to the learned model. Alternatively the
image can be segmented using a two class model which better dis-
criminates between the road and non-road regions [4]. The above
segmentation method worked for winning the race, but drivable ar-
eas could show up in non-sensible side areas, on hillsides etc. In
this paper we introduce a Bayesian image model that incorporates a
set of geometrical and smoothness constraints that yield more global
”semantics” for navigation: road/corridor, off-road and sky.

2. THE IMAGE MODEL

This section describes a hierarchical Bayesian network used to model
images captured in the desert. The image model is used to cluster
image regions such as the road, sky or sides of the road. These re-
gions have a consistent position relative to the other regions in the
same image while displaying a large variability in size and shape.
For example the sky region is always above the land region (road or
sides of the road). Similarly there is a consistent position of the road
region relative to the sides of the road. On the other hand the shape
of the region and its size depends on the horizontal orientation of the
road, the inclination of the road (sky will appear a larger region while
looking down hill) or the landscape around the road (high mountains,
or hills will shape differently the sky region than plateaus). One
of the most successful statistical models used to describe a specific
category of images with similar properties is the embedded hidden
Markov model (EHMM). This model was used in character recogni-
tion [5] and face recognition [6]. The success of this model for faces
relies on its ability to describe the relative position of the significant
facial features such as eyes nose or mouth while allowing for a larger
flexibility than template based approaches. The EHMM (Figure 2 a)
is a Bayesian network [7] that describes an array of observations
oij , i = 1, . . . H, j = 1, . . . W with W columns and H rows. This
network approximates the fully connected two-dimensional hidden
Markov model(HMM) for which the inference is an NP complete
problem [5]. The EHMM can be seen as hidden Markov model in
which each hidden node Xi, i = 1, . . . , H associated with a row in
an image is a parent of another HMM describing the sequence of ob-
servations in that row. The discrete hidden nodes xij , j = 1 . . . W
describe the observed nodes oij along each column of the ith row.
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Fig. 2. An EHMM (a) and an extended EHMM with shadow nodes
(b).
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Fig. 3. The state diagram of the image model. The transparent ovals
represent the values of the nodes Xi and the shaded circles represent
the values of the nodes xij .

Figure 3 illustrates the state diagram for an EHMM. In our ex-
periments, the nodes Xi have binary values such as ”sky row” or
”land row” denoting that the global assignment of the ith row. The
xij hidden nodes have three values each describing the region (”left
side-L”, ”road-Rd”, ”right side-R” for ”land row” or ”left side-L”,
”sky-S”, ”right side-R” for ”sky row”) to which the observation oij

is assigned. The constraints imposed by the state diagram segment
the image in compact regions and preserve the relative positions of a
region relative to the other regions in the image.

The flexibility of the EHMM in modelling images can be en-
hanced by introducing an additional set of binary hidden nodes sij

associated with each observed node to determine if the pixel is ob-
served in shadow or direct light (Figure 2 b).

Both the above models describe dependencies between consecu-
tive rows and consecutive columns in the same row but do not model
directly dependencies between a hidden node xij and the hidden
node associated with the pixel in the same column of the previous
row xi−1,j . To overcome this problem we introduced the image
model illustrated in Figure 4. In this model each row i is described
by a ”duration” HMM [8] with parameters dik. These parameters
represent the number of pixels assigned to state k in row i or the
”duration” of state k in row i.

∑

k

dik = W

The hidden nodes Di associated with row i describe the set of pa-
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Fig. 4. A Bayesian network for image modelling.

rameters dik. Formally, the image model can be described by the
following

P (O)=
∑

X,D,x,s

P (X1)P (D1)
∏

i

P (Di|Di−1)P (Xi|Xi−1) ·

· P (oi|xi, si, Xi, Di)

where

P (Di|Di−1) =
∏

k

P (dik|di−1k)

and

P (di,k|di−1,k) = N(di,k, di−1,k, σ2
k)

is Gaussian density function with mean dik and variance σk. Within
each row the observation likelihood is given by

P (oi|xi, si, Xi, Di)=

di,1∏

j=1

P (oij |xij = k, sij = m, Xi) ·

·
K−1∏

k=1

di,k+1∏

j=di,k

P (oij |xij = k, sij = m, Xi)

where

P (oij |xij = k, sij = m, Xi) = N(oij , µkm,Ckm)

is a Gaussian density function with mean µkm and diagonal covari-
ance matrix Ckm. The conditional probabilities P (Xi|Xi−1) are
determined by the state diagram in Figure 3.

3. LEARNING THE IMAGE MODEL

The parameters of the model described in the previous section can be
learned from a large set of images using the expectation-maximization
algorithm [7] or can be approximated using a modified version of the



segmental K-means algorithm [8]. The segmental K-means shown
in Figure 5 initializes the model parameters from an initial segmen-
tation and iteratively improves the model parameters and the seg-
mentation results until convergence or a fixed number of iterations
is reached. In order to increase the computation speed, maintain
a set of constraints on the segmentation result, and learn robustly
the model parameters from one image, the number of the trained
model parameters described in the previous section must be reduced.
Hence, in this paper the state transition probabilities described in
Figure 3, and the variance of the duration parameters σk are fixed.
Furthermore, the values of the shadow nodes sij are kept fixed dur-
ing the learning of the remaining parameters of the model. The val-
ues of the shadow nodes, which determine the pixels in shadow, are
determined by a simple comparison with a fixed threshold in the
color space. In the initial segmentation the hidden nodes Xi and
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Fig. 5. Image segmentation

xij can be assigned to a value at random or based on some a priori
information. A random initialization can often lead to a poor im-
age segmentation. The performance can be improved by using sev-
eral non-uniform image segmentation and picking the one with the
highest image likelihood, but this leads to a higher computational
complexity. An alternative solution is to start with shadow and sky
detection since these regions are efficiently segmented using color
information. In our system the segmentation of the remaining part
of the image is initialized using the information provided by the laser
sensors. The short range road area provided by the laser is mapped to
a trapezoidal region in the image plane. The region between the sky
and the road detected by laser (where the laser information is less re-
liable) is segmented uniformly in three horizontal regions according
to the state diagram.

Following the initialization, the model parameters µkm and Ckm

are learned from the current image segmentation. Next, the image is
segmented by finding the best values for the set of hidden states of
the image model that fits the observations extracted from the image.
With the values of the shadow nodes assumed known and fixed the
segmentation problem is stated as finding

{X,D,x} = argmax{X,D,x}P(O|X,D,x).

The image segmentation starts with the computation in each row of
the observation likelihood P (oi|xi, Xi, Di) for a set of discrete val-
ues of Di. In our experimental results we selected 100 possible val-
ues describing a set of possible row segmentations. The best se-
quence of values for the nodes Xi and Di that maximize 1 is then
decoded using the Viterbi algorithm [8].

The resulting segmentation can be used to re-learn the model
parameters in a process that can run iteratively until convergence or
a fixed number of iterations is reached.

4. EXPERIMENTAL RESULTS

The models presented in this paper were tested on several sequences
consisting of several hours of video captured in the Nevada desert.
Figure 6 and Figure 7 illustrate typical road segmentation results on
the same frames of three different video sequences using the em-
bedded HMM with shadow nodes in Figure 2b. and the Bayesian
network shown in Figure 4 respectively. Although the EHMM with
shadow nodes has a higher run time speed, the use of the Bayesian
model in Figure 4 significantly increases the accuracy of the sys-
tem and operates at 10 frames/second on images of size 320×240
pixels on a 1.6 GHz Pentium M processor. The use of the hidden
nodes Di in Figure 4 introduces a set of smoothness and geometri-
cal constraints that model better the perspective effects in an image
and the natural shapes of various regions. This advances the “driv-
able blobs” segmentation used in the race to now indicate drivable
corridors together with horizon boundaries.

5. CONCLUSIONS

This paper describes a statistical model for segmenting of images
captured in the desert and reliably detecting of off road drivable cor-
ridors. The model introduced in this paper is a hierarchical Bayesian
network that describes the data at fine grain along one dimension and
a course grain along the second dimension. In addition the model in-
troduces a set of geometrical and smoothness constraints that make
it particularly suitable for the type of images discussed in this paper,
and improves significantly the image segmentation results obtained
using the embedded HMM.
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Fig. 6. Road segmentation results using the EHMM in Figure 2b.
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Fig. 7. Road segmentation results using the Bayesian network in
Figure 4.


