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ABSTRACT

Hidden Markov Models (HMM) have been successfully
used for speech and action recognition where the data
that is to be modeled is one-dimensional. Although at-
tempts to use these one-dimensional HMMs for face
recognition have been moderately successful, images
are two-dimensional (2-D). Since 2-D HMM’s are too
complex for real-time face recognition, in this paper
we present a new approach for face recognition using
an embedded HMM and compare this new approach
to the eigenface method for face recognition, and to
other HMM-based methods. Specifically, an embedded
HMM has equal or better performance than previous
methods, with reduced computational complexity.

1. INTRODUCTION

Face recognition from still images and video sequences
is emerging as an active research area with numerous
commercial and law enforcement applications. Face
recognition systems can be used to allow access to an
ATM machine or a computer, to control the entry of
people into restricted areas, and to recognize people in
specific areas (banks, stores), or in a specific database
(police records). A robust face recognition system must
operate under a variety of conditions, such as varying
illuminations and backgrounds, and it must be able to
handle non-frontal facial images of males and females
of different ages and races.

Previous approaches to face recognition [1] include
geometric feature-based methods, template-based meth-
ods [2], [3] [4], and more recently model-based methods
[5], [6]. The most significant facial features of a frontal
face image include the hair, forehead, eyes, nose and
mouth. Furthermore, these features occur in a natural
order, from top to bottom, even if the images undergo
small rotations in the image plane, and/or rotations
in the plane perpendicular to the image plane. There-
fore, the image of a face may be modeled using a one-
dimensional HMM by assigning each of these regions
to a state as illustrated in Figure 1. In this model, the

Figure 1: HMM for face recognition

states themselves are not directly observable. What
is observed are observation vectors that are statisti-
cally dependent upon the state of the HMM. These
vectors are obtained from L rows that are extracted
sequentially from the top of the image to the bottom.
Since the length of each row is fixed, and the height
of a face image is proportional to its width, this HMM
is restricted to fixed-size face images. Although used
to model two-dimensional data, this one-dimensional
HMM achieved recognition rates of about 85% [5] [7]

[8]-

This one-dimensional model was extended by Samaria,
to a structure that he referred to as a pseudo 2-D HMM
by adding a marker block at the end of each line in
the image, and introducing an additional end-of-line
state at the end of each horizontal HMM as shown in
Figure 2 [9]. The end-of-line states were allowed two
possible transitions: one back to the beginning of the
same row of states, and one that transitions to the next
row of states. By setting the initial standard deviation
of the end-of-line states to be close to zero, and the
means close to the intensity of the end-of-line marker
block, the state topology was preserved, and the pa-
rameters of the end-of-line states were unaltered after
re-estimation. Samaria also considered a pseudo 2D-
HMM that involved removing end-of-marker blocks as
shown in Figure 3. Unlike the previous model, this
topology allows transitions to a new super state from a
frame that is not at the end of a row and, consequently,
does not preserve the two-dimensional structure of the
data. However, Samaria reported similar recognition
results for both models, which were between 90 and 95



percent.
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Figure 2: A one-dimensional HMM with end-of-line
states.
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Figure 3: One-dimensional HMM without end-of-line
states.

In this paper, we describe a new approach to face
recognition using an embedded HMM as introduced by
Kuo and Agazzi for character recognition [10]. Unlike
previous HMM approaches to face recognition, which
use pixel intensities to form the observation vectors,
our embedded HMM uses observation vectors that are
composed of two-dimensional Discrete Cosine Trans-
form (2D-DCT) coefficients. Compared to template-
based methods, and one-dimensional HMMs, our pro-
posed system offers a more flexible framework for face
recognition, and can be used more efficiently in scale
invariant systems.

2. AN EMBEDDED HMM

A one-dimensional HMM is a Markov chain with a fi-
nite number of unobservable states [11]. Although the
Markov states are not directly observable, each state
has a probability distribution associated with the set of
possible observations. Thus, when the HMM is in state
i, the output (observation) is determined according to
a given conditional probability density function, often
Gaussian or a Gaussian mixture. What is necessary
to statistically characterize an HMM is a state tran-
sition probability matrix, an initial state probability
distribution, and a set of probability density functions
associated with the observations for each state.

A one-dimensional HMM may be generalized, to
give it the appearance of a two-dimensional structure,
by allowing each state in a one-dimensional HMM to be
an HMM. In this way, the HMM consists of a set of su-
per states, along with a set of embedded states. The su-
per states may then be used to model two-dimensional
data along one direction, with the embedded HMM
modeling the data along the other direction. This model
differs from a true two-dimensional HMM since transi-
tions between the states in different super states are not
allowed. Therefore, this is referred to as an embedded
HMM. The elements of an embedded HMM are:

e The number of super states, Ny, and the set of
super states, So = {So,;} 1 <i < Np.

e The initial super state distribution, Ilg = {7},
where 7y ; are the probabilities of being in super
state ¢ at time zero.

e The super state transition probability matrix,
Ao = {aoi;}

where ay ;; is the probability of transitioning from
super state 4 to super state i.

e The parameters of the embedded HMMs, which
include

— The number of embedded states in the kth
super state, Nl(k), and the set of embedded
states, Sgk) = {Sikz)}

— The initial state distribution, H§’“) = {w%{?},
where 7r§]fi) are the probabilities of being in
state i of super state k at time zero.

— The state transition probability matrix,
k k
AP = ()

that specifies the probability of transitioning
from state k to state j.



e Finally, there is the state probability matrix,
B(k) = {bgk) (Oto,t1)}

for the set of observations where Oy, repre-
sent the observation vector at row tg and column
t1. In a continuous density HMM, the states are
characterized by continuous observation density
functions. The probability density function that
is typically used is a finite mixture of the form

b(k) 0t07t1 Z c(k)N Oto, t1s :uz(fn)’ Uz(lncz)) (1)

where1 < < Nl(k), c(k) is the mixture coeflicient
for the mth mixture in state ¢ of super state k.
N(O¢ 11, ugf,z, Uz(fn)) is a Gaussian pdf with mean

k : . k
vector p;,. and covariance matrix UEWZ

Let A®) = {II{¥ A% B(®)} be the set of parame-
ters that define the k" super state. Using a shorthand
notation, an embedded HMM is defined as the triplet

A= (Ho,Ao,A). (2)

where A = {AM A® AN} Although more
complex than a one-dimensional HMM, an embedded

HMM is more appropriate for data that is two-dimensional,

and has a complexity proportional to the sum of the
squares of the number of states, gil(Nl(k))Z. The
state structure of the face model and the non-zero tran-
sition probabilities of the embedded HMM are shown
in Figure 4. Each state in the overall top-to-bottom
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Figure 4: Embedded HMM for face recognition

HMM is assigned to a left-to-right HMM. This model
is appropriate for face images since it exploits an im-
portant facial characteristic: frontal faces preserve the

same structure of “super states” from top to bottom,
and also the same left-to right structure of “states” in-
side each of these “super states”. Compared with the
other structures, an embedded HMM has the following
advantages:

1. The complexity is reduced both in terms of train-
ing and recognition,

2. Better initial estimates of the model parameters
that can be obtained,

3. The two-dimensional structure of the data is nat-
urally preserved without using extra frames or
end-of-line states that increase the complexity of
the model.

The states of the embedded HMM are described by
single density Gaussian pdf

bgk) (Oto,t1) =

and the covariance matrix is assumed to be diagonal.

N(Oyq 1y, ¥, UKD (3)

k3

3. THE OBSERVATION VECTORS

The observation sequence is generated using the tech-
nique shown in Figure 5, where a P x L window scans
the image left to right, and top to bottom. The over-
lap between adjacent windows is M lines in the vertical
direction and @ columns in the horizontal direction.

ij i+m, j

I I |
I .

\
v Ouj+n \ oi+lrm.j+n

- S -

Figure 5: Face image parameterization and blocks ex-
traction

In [9], the observation vectors consist of all the pixel
values from each of the blocks, and therefore the dimen-
sion of the observation vector is L x P. The use of the
pixel values as observation vectors has two important
disadvantages. First, pixel values do not represent ro-
bust features since they tend to be sensitive to image
noise as well as image rotations or shifts, and changes
in illumination. Second, the large dimension of the ob-
servation vector leads to high computational complex-
ity of the training and recognition stages. This can be
critical for a face recognition system that operates on a
large database, or when the recognition system is used
for real time applications.



In our embedded HMM, the observation vectors
were formed from the 2D-DCT coefficients of each im-
age block. The compression and decorrelation proper-
ties of the 2D-DCT for natural images makes it suitable
for their use as observation vectors. Specifically, the co-
efficients within a rectangular window over the lowest
frequencies in the 2D-DCT domain, where most of the
image energy is found, were used as observation vec-
tors. Using 2D-DCT coeflicients instead of pixel values
reduces dramatically the size of the observation vectors
and, therefore, decreases the complexity of the recog-
nition system. For our experiments, L = 8, P = 10
and six 2D-DCT coeflicients from each block are used
as observation vectors. Therefore, the size of the ob-
servation vectors is reduced over 13 times compared to
the method that uses the pixel intensities as the obser-
vation vector.

4. TRAINING THE FACE MODELS

Each individual in the database is represented by an
embedded HMM. A set of images representing differ-
ent instances of the same face were used for training.
The observation vectors extracted from each block were
used to train the models as follows (Figure 6):
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NO

Convergence
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Figure 6: Training Scheme

1. According to the number of super states, the num-
ber of states in each super state, and the top-to-
bottom and left-to-right structure of an embed-
ded HMMprototype, the data is uniformly seg-

mented to obtain initial estimates of the model
parameters. First, the observations of the overall
top-to bottom HMM are segmented in N, verti-
cal super states, then, the data corresponding to
each of this super states is uniformly segmented
from left to right into Nl(k) states.

2. At the next iteration, the uniform segmentation
is replaced by a doubly embedded Viterbi seg-
mentation algorithm [10].
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Figure 7: Doubly Embedded Viterbi Algorithm

The doubly embedded Viterbi segmentation al-
gorithm, illustrated in Figure 7, consists of the
following steps. First, the Viterbi segmentation
is applied to each row of the image, and the prob-
abilities
t t
P(Otml tee Oto,T17q§,g) ce qi%’i |)‘(k))
1<k<Ng

are calculated, where qﬁgf, 1 < t; < T repre-
sent the state of a super state assigned to the ob-
servation Oy, s . The probabilities of the states
and observations in a row given the super state
model, obtained from the Viterbi segmentation,
represent the super state probabilities. The super
state probabilities, together with the super state
transition probabilities Ag and the initial super
state probabilities Ilg, are used to perform the
Viterbi segmentation from the top to the bottom
of the image and to determine:

P(Ol’l e 01,T1 yaos OTO,I e OTO,T1;q0,1 e qU,Tol)‘)



or using a shorthand notation P(O, Q|)). go,t,, 1 <

to < Tp are the super states corresponding to row
to.

3. The model parameters are estimated using an ex-
tension of the segmental k-means algorithm [12]
to two dimensions. Therefore, the model param-
eters are obtained according to:

S number of transitions from Sﬂ? to S%kj)

Lij = - k
’ number of transitions from S{ i)
bl

,ugk) = sample mean of vector 4 in super state k

ng) = sample covariance matrix of vectors in
state i of super state k

number of transitions from Sy ; to Sy ;
ag,ij = "
i number of transitions from Sy ;

4. The iteration stop, and the HMM is initialized,
when the Viterbi segmentation likelihood at con-
secutive iterations is smaller than a threshold.

5. FACE RECOGNITION

After extracting the observation vectors corresponding
to the test face images, the probability of the observa-
tion sequence given an embedded HMM face model is
computed via a doubly embedded Viterbi recognizer.
The model with the highest likelihood is selected and
this model reveals the identity of the unknown face.

The face recognition system has been tested on the
Olivetti Research Ltd. database (400 images of 40 in-
dividuals, 10 images per individual at the resolution
of 92 x 112 pixels). Half of the images were used in
training, and the other half were used for testing. The
database contains face images of people of different
ages, both males and females, showing different fa-
cial expressions, hair styles, and eye wear (glasses/no
glasses). On the same database, the recognition perfor-
mance with a one-dimensional HMM [5], [8] was around
85%. The recognition rate of the “eigenfaces” method
which depends on the number of eigenfaces used, varies
from 73% with less than 5 eigenfaces to about 90%
when 200 eigenfaces are used. The recognition per-
formance for the pseudo 2-D HMM of Samaria [9] de-
pends on the structure and the sampling that is used
from 90% to 95%. However, due to the large dimension
of the observation vectors, the system required about
four minutes for a face to be recognized on Sparc 20
workstation.

The accuracy of the system presented in this paper
is increased to 98% while the recognition time required
for one face to be identified is significantly decreased
compared to the structure presented in [9]. The ef-
ficiency of the system presented in this paper is due
both to the choice of a more efficient observation vec-
tor and to the use of an efficient HMM structure. While
it is obvious that a small size of the observation vec-
tor reduces the complexity of both the training and
recognition the efficiency of the an embedded HMM-
structure will be discussed in more detail. The number
of additions required by the Viterbi decoder is N2T,
where N is the number of states and 7' is the number
of observations. Let NumAdds represent the number
of additions required by the Viterbi decoder. Then, for
the one-dimensional HMM

NumAdds = N°T,

for Samaria’s pseudo 2-D HMM [9]

Ny
NumAdds = (3 N{")?TyT
k=1

and for an embedded HMM

No
2
NumAdds = (3" (N{¥) T1)To + No*To
k=1

Figure 8 presents some of the recognition results. The
crossed images represent incorrect classifications, while
the rest of images are examples of correct classification.

6. CONCLUSIONS

This paper describes an embedded HMM approach for
face recognition that uses an efficient set of observation
vectors based on the DCT coefficients. The use of an
embedded HMM model for the human face is justified
by the structure of the face, and is invariant for a large
range of orientations, gestures, and face appearances.
The use of an embedded HMM increases by over 10%
the recognition rate of the one-dimensional HMM and
the classical eigenfaces method. Furthermore, an em-
bedded HMM can be used for the modeling of faces of
different sizes without prescaling of the images (this is
not possible for the template-based methods).

Future work will be directed towards building a
face detection system that uses an embedded HMM
face model. Further improvements of the an embed-
ded HMMcan be obtained by using the state duration
modeling and mixture density modeling of the states.
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Figure 8: Face Recognition Results
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