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Summary

The use of hidden Markov models (HMM) for faces is motivated by their partial
invariance to variations in scaling and by the structure of faces. The most significant
facial features of a frontal face include the hair, forehead, eyes, nose and mouth. These
features occur in a natural order, from top to bottom, even if the images undergo
small rotations in the image plane, and/or rotations in the plane perpendicular to the
image plane. Therefore, the image of a face may be modeled using a one-dimensional
HMM by assigning each of these regions to a state. The observation vectors are
obtained from the DCT or KLT coefficients.

A one-dimensional HMM may be generalized, to give it the appearance of a
two- dimensional structure, by allowing each state in a one-dimensional HMM to be
a HMM. In this way, the HMM consists of a set of super states, along with a set
of embedded states. Therefore, this is referred to as an embedded HMM. The super
states may then be used to model two-dimensional data along one direction, with the
embedded HMM modeling the data along the other direction.

Both the standard HMM and the embedded HMM were tested for face recogni-
tion and detection. Compared to other methods, our proposed system offers a more
flexible framework for face recognition and detection, and can be used more efficiently

in scale invariant systems.



CHAPTER 1

Introduction

1.1 Motivation for the Research

Face detection and face recognition [1] from still and video images is emerging as
an active research area with numerous commercial and law enforcement applications.
Face detection and recognition systems can be used to allow access to an ATM ma-
chine or a computer, to control the entry of people into restricted areas, to recognize
people in specific areas (banks, stores), or in a specific database (police database).

The goal of our research is to develop a face detection and recognition system
that can be used in a real-time face identification system (Figure 1.1). A face
identification system must operate under a variety of conditions, such as varying
illuminations and backgrounds, it must be able to handle non-frontal facial images of
both males and females of different ages and races, and be robust in the presence of
two or more faces within a video sequence.

The overall face identification system (Figure 1.1) involves processing a video
sequence to perform the following tasks. First, is to detect faces in real-time in video
sequences in an uncontrolled environment. Second, is to track the detected faces over
consecutive frames, and select the frame or frames that will be best for recognition.
The final step is to perform face recognition on the detected faces. If it is assumed
that the background is known and stationary, then the bodies can be segmented from
the background, at each frame in the video sequence. If no people are detected,

then the system updates the background by adding the information from the last
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Figure 1.1: The overall face identification system

frame. Otherwise, if a face is detected, the system can re-train the face model used
for detection. At the recognition stage, if a new face image is identified, then it is
used for the training of the new face model. On the other hand, if a face is recognized
as one of the faces stored in the database, then the corresponding face model can be
re-trained.

Most of the previous attempts in face detection and recognition, which will be
discussed in more detail in the next chapter, may be classified as either feature-
based or template-based approaches. It has been shown [2] that the template based
approaches generally perform better than feature based methods. However, these
methods are very sensitive to variations in the scale of the image. To overcome this
problem, templates at different sizes were considered for both detection and recogni-
tion. However, this solution dramatically increases the computational complexity of
the methods.

The approach that we are proposing involves the use of Hidden Markov Models
(HMM) for the face. For a frontal face, the “states” of the Markov model include hair,



forehead, eyes, nose and mouth. These states always occur in the same order, from
top to bottom, even if the faces undergo small rotations in the image plane, and/or
small rotations in the plane perpendicular to the image plane. Therefore, each of these
facial regions will be assigned to a state, in a left-to-right one-dimensional continuous
HMM. A one-dimensional HMM may be generalized, to give it the appearance of a
two- dimensional structure, by allowing each state in a one-dimensional HMM to be
a HMM. In this way, the HMM consists of a set of super states, along with a set
of embedded states. Therefore, this is referred to as an embedded HMM. The super
states may then be used to model two-dimensional data along one direction, with the
embedded HMM modeling the data along the other direction. The advantage of the
embedded HMM-based approach is its ability to handle variations in scale, which is a
challenging problem for any face detection/recognition system, and its computational
efficiency compared to other approaches.

Although the same model based approach can be used for both face detection
and recognition, there are many significant differences between these two problems.
While the training set for recognition is in general small, and limited by the amount
of information we have about a specific person, the training set used for detection is
virtually unlimited and must cover a large variety of faces of different people, from all
ages, races, taken under different lighting conditions and showing all facial expressions
and orientations, hair styles, facial hair, and eye wear (glasses/no glasses).

The time efficiency of the face detection system depends primarily on the image
resolution, and secondarily on the number of face models used for detection. It has
been shown [3] that five models corresponding to different face views are sufficient
for a good face representation under a large range of orientations. The time required
by the detection system is critical, since a fast face detection system will improve
the robustness of the tracking system, and consequently the quality of the images
sent to the recognition system. On the other hand, the time required for recognition

is a function of the size of the database. No real-time constraint is imposed on the



recognition system in Figure 1.1, since recognition is not performed on each frame
but only after the detection and tracking systems send a face image to the recognizer.
Thus the recognition time must only be less than the time between two consecutive
occurrences of people in a scene. In addition, this constraint can be further relaxed

by the use of more processors.

1.2 Outline of the Thesis

The focus of this thesis is the modeling of human faces using hidden Markov models
(HMM) and with application in face recognition and detection. Chapter 2 describes
some of the most successful face recognition and detection approaches. Chapter 3
describes a real-time face detection algorithm from gray scale video sequences, that
uses a deformable template based approach. Chapter 4 presents a HMM-based face
detection and recognition system that uses an efficient set of observation vectors. In
Chapter 5 the theoretical aspects and the key algorithms used in the training and
recognition of the embedded HMM are presented. Chapter 6 describes an embedded
HMM for faces and presents a face detection and recognition system that uses this
model. Finally, the conclusions of this work are drawn and suggested directions for

further research are given in Chapter 7.



CHAPTER 2

Background

This chapter overviews some of the algorithms that have been developed for face
recognition and detection. These algorithms [1] may be broadly classified as either
geometric feature-based methods, template-based methods or, more recently, model-
based methods. For each of these approaches some of the most popular algorithms
will be briefly described. We will summarize and compare these algorithms in terms

of their accuracy, robustness and complexity.

2.1 Geometric Feature-Based Methods

The geometric feature based approaches [4], [5] are the earliest approaches to face
recognition and detection. In these systems, the significant facial features are detected
and the distances among them as well as other geometric characteristics are combined
in a feature vector that is used to represent a face. To recognize a face, first the
feature vectors of the test image and of the images in the database are obtained.
Second, a similarity measure between these vectors, most often a minimum distance
criterion, is used to determine the identity of the face. As pointed out by Brunelli
and Poggio [2], the template-based approaches, which will be discussed in the next

section, outperform the early geometric-feature based approaches.



2.2 Template-Based Methods

The template based approaches represent the most popular technique used to recog-
nize and detect faces. Unlike the geometric feature-based approaches, the template-
based approaches use a feature vector that represents the entire face template rather

than only the most significant facial features.

2.2.1 Correlation-Based Methods

Correlation methods for face detection and recognition [6]are based on the compu-
tation of the normalized cross-correlation coefficient C'y [7] defined by:

_ E{n T} — E{Ir} E{T}
N o(Ir)o(T) ’

Cn (2.1)

where I is the image that is to be matched to the template T', I7T" represents the
pixel-by-pixel product, E' is the expectation operator, and o is the standard deviation
over the area being matched. In [2], [8], [6] the authors describe a correlation-based
method for both face detection and face recognition from frontal views. The first step
in these methods is to determine the location of the significant facial features such
as eyes, nose or mouth. The importance of robust facial feature detection for both
detection and recognition has resulted in the development of a variety of different
facial feature detection algorithms [9], [10], [11], [12], [13], [14]. The facial
feature detection method proposed by Brunelli and Poggio [2], [8] uses a set of
templates to detect the position of the eyes in an image, by looking for the maximum
absolute values of the normalized correlation coefficient of these templates at each
point in the test image. To cope with scale variations, a set of templates at different
scales was used. The problems associated with scale variation can be significantly
reduced by using hierarchical correlation (as proposed by Burt in [15]). For face
recognition, the templates corresponding to the significant facial features of the test
images are compared, in turn, with the corresponding templates of all of the images

in the database, returning a vector of matching scores (one per feature) computed



through normalized cross correlation. The similarity scores of different features are
integrated to obtain a global score that is used for recognition. Other similar methods
that use correlation [6] or higher order statistics [16], [17] revealed the accuracy of
these methods but also their complexity.

In [18], Beymer extended the correlation based approach to a view-based ap-
proach for recognizing faces under varying orientations, including rotations with re-
spect to the axis perpendicular to the image plane (rotations in image depth). To
handle rotations out of the image plane, templates from different views were used.
After the pose is determined, the task of recognition is reduced to the classical corre-
lation method in which the facial feature templates are matched to the corresponding
templates of the appropriate view-based models using the cross correlation coefficient.
However, this approach is computationally expensive, and it is sensitive to lighting

conditions.

2.2.2 Karhunen-Loeve Expansion - Based Methods
The Eigenfaces Method

The Eigenfaces method [19], [20], [21] proposed by Turk and Pentland is based on the
Karhunen-Loeve Transform (KLT), and is motivated by the earlier work of Sirovitch
and Kirby [22], [23] for efficiently representing face images. The eigenvectors of
the covariance matrix C of the ensemble of training faces are called eigenfaces. The
space spanned by the eigenvectors vy, £ = 1,..., K corresponding to the K largest
eigenvalues of the covariance matrix, is called the face space. A new face image is
transformed into its eigenface components by projection onto the face space. The
projections form the feature vector which describes the contribution of each eigen-
face in representing the input image. A test image is recognized by computing the
Euclidean distance in the feature space and selecting the closest match. The effect of
the lighting conditions over the KLT based method has been detailed in [24]. The

eigenface method has also been used for face detection [25], [26] by measuring the



distance from each local pattern in a test image to the face space defined by the
eigenfaces.

In [27], Akamatsu et. al., applied the eigenface method to the magnitude of the
Fourier spectrum of the images after normalization with respect to illumination and
scale. Due to the shift invariance property of the magnitude of the Fourier spectrum,
and to the illumination and scale normalization, the method, called the Karhunen-
Loeve Transform of Fourier Spectrum in the Affine Transformed Target Image (KL-
FSAT), performed better than classical eigenfaces method under variations in head

orientations and shifting.

The “Parametric” Approach versus the “View-Based” Approach

In [28], Murase and Nyar extended the capabilities of the eigenface method to general
3D object recognition under different illumination and viewing conditions. Given N
object images taken under P views and L different illumination conditions, a set of
eigenvectors was obtained by applying the eigenface method to all the available data.
In this way a single “parametric space” describes the object identity as well as the
viewing or illumination conditions. The eigenface decomposition of this space was
used for feature extraction and classification. However, in order to ensure discrimi-
nation between different objects, the number of eigenvectors used in this method was
increased compared to the classical Eigenface method.

Pentland et. al. [3] developed a “view-based” eigenspace approach for human
face recognition under general viewing conditions. The “view-based” approach is
essentially an extension of the eigenface technique to multiple sets of eigenvectors,
one for each face orientation. First, the orientation of the test face is determined
by calculating the residual description error (distance from feature space) for each
view space, and selecting the space for which the distance is minimized. Once the
proper view is determined, the face image is classified using the eigenface method

in the corresponding space. As expected, the view-based representation has better



recognition results than the parametric approach, at a cost of a higher computational

complexity.

Recognition Using Eigenfeatures

While the classical eigenface method uses the KLT coefficients of the template corre-
sponding to the whole face image, in [3] Pentland et. al. introduced a face detection
and recognition system that uses the KLT coefficients of the templates corresponding
to the significant facial features such as eyes, nose and mouth. For each of the facial
features, a feature space is built by selecting the most significant “eigenfeatures”,
which are the eigenvectors corresponding to the largest eigenvalues of the features
correlation matrix. The significant facial features were detected using the distance
from the feature space and selecting the closest match. The scores of similarity be-
tween the templates of the test image and the templates of the images in the training
set, were integrated in a cumulative score that measures the distance between the
test image and the training images. The method was extended to the detection of
features under different viewing geometries by using either a view-based eigenspace

or a parametric eigenspace.

2.2.3 Linear Discriminant-Based Methods

In [29], [30], [31], the authors proposed a new method for face recognition using
Fisher’s Linear Discriminant Transform (LDT) [32]. The “Fisherface” method uses
the class membership information and develops a set of feature vectors in which
variations of different faces are emphasized while different instances of faces due to il-
lumination conditions, facial expressions, and orientations, are de-emphasized. While
the Karhunen-Loeve Transform performs a rotation on a set of axes along which the
projection of sample vectors differ most in the autocorrelation sense, the LDT per-
forms a rotation on a set of axes along which the projection of sample vectors show

maximum discrimination. Each test image is projected onto the optimal LDT space



and the resulting set of coefficients is used to compute the Euclidean distance from
the images in the training set. More recently the Fisherface method has alos been
applied to face detection from color images [33].

In [27], Akamatsu et. al. applied LDT to the magnitude of the Fourier Spec-
trum of the intensity image. The database used in the experiments contained large
variations in lighting conditions as well as variations in head orientation. The results
reported by the authors showed that LDT in the Fourier domain is significantly more
robust to variations in lighting than the LDT applied directly to the intensity images.
However, the computational complexity of this method is significantly higher than

the classical Fisherface method due to the computation of the Fourier spectrum.

2.2.4 Singular Value Decomposition - Based Methods

The face recognition methods presented in this section use the general result stated by
the Singular Value Decomposition Theorem. In [34], Z.Hong revealed the importance
of using Singular Value Decomposition method (SVD) for human face recognition by
proving several important properties of the singular values (SV) vector which include:
the stability of the SV vector to small perturbations caused by stochastic variation
in the intensity image, the proportional variation of the SV vector with the pixel
intensities, the invariance of the SV feature vector to rotation, translation and mirror
transformations. The above properties of the SV vector provide the theoretical basis
for using singular values as image features. In addition, it has been shown [35], [36]
that compressing the original SV vector into a low dimensional space by means of
various mathematical transforms leads to higher recognition performance. Among
various dimensionality reducing transformations, the Linear Discriminant Transform
is the most popular one. After the set of optimal discriminant vectors {vy, vg, ..., vy}
has been extracted, the feature vectors are obtained by projecting the SV vectors
onto the space spanned by {vi,vs,...,vx}. For each test image, the SV vector is

projected onto the space spanned by {v1,vs,..., v} and classification is performed

10



in the feature space by measuring the Euclidean distance in this space, and assigning
the test image to the class of images for which the minimum distance is achieved.
Another method to reduce the dimension of the feature space of the SV feature
vectors was described by Cheng et. al. [37]. The training set used consisted of a
small sample of face images of the same person. If [sz represents the j face image of
person ¢, then the average image is given by % Z;-Vzl IJZ Eigenvalues and eigenvectors
are determined for this average image using SVD. The eigenvalues are thresholded
to discard values that are close to zero. Average eigenvectors (called feature vectors)
for all the average face images are calculated. A test image is then projected onto

the space spanned by the eigenvectors. The Frobenius norm is used as a criterion to

determine which person the test image should be associated with.

2.2.5 Matching Pursuit - Based Methods

Philips introduced a template-based face detection and recognition system [38], [39]
that uses a matching pursuit filter to obtain the feature vector. The matching pursuit
algorithm [40] applied to an image iteratively selects from a dictionary of basis
functions the best decomposition of the image by minimizing at each iteration the
residue of the image. The algorithm described by Phillips [41] constructs the best
decomposition of a set of images by iteratively optimizing a cost function, which
is determined from the residues of the individual images. The dictionary of basis
functions used by the author consists of two-dimensional wavelets, which give a better
image representation than the PCA and LDA -based techniques where images were
stored as vectors. For recognition the cost function is a measure of distances between
faces and is maximized at each iteration. For detection the goal is to find a filter
that clusters together similar templates, therefore the cost function, which represents
a measure of similarity between templates (the mean for example), is minimized at
each iteration. The feature vector represents the average value of the projection of

the templates on the selected basis.

11



2.2.6 Neural Networks - Based Methods

Templates have been also used as input to Neural Networks (NN)-based systems.
Cotrell and Fleming [42] used in their face recognition system two backpropagation
neural networks. The first is in the auto association mode and the second is in
classification mode. The auto association NN automatically extracts features (as the
output of a hidden layer), that are used by the classification NN. The resulting feature
vector is the same as that produced by the eigenface method if the auto association
net is linear. More recently, Lawrence et al. [43] proposed a hybrid NN approach
that combines local image sampling, a self organizing map (SOP), and a convolutional
NN. The SOP provides a a set of features that represents a more compact and robust
representation of the image samples. These features are then fed into a convolutional
NN. This architecture provides partial invariance to translation, rotation, scale, and
face deformation. In [44], [45], the authors introduced an efficient probabilistic
decision based NN (PDBNN) for face detection and recognition. The feature vector
used consists of intensity and edge values obtained from a facial region of the down
sampled images in the training set. The facial region contains the eyes and nose, but
excludes the hair and mouth. Two PDBNNs were trained with these feature vectors
and used one for face detection and the other for face recognition. Other successful
NN-based approaches for face detection are reported in [46], [47], [48], [49] and

more recently in [50].

2.2.7 The Dynamic Link Matching Approach

The above template-based matching methods use an Euclidian distance to identify a
face in a gallery or to detect a face from a background. A more flexible distance mea-
sure that accounts for common facial transformations is the dynamic link matching
introduced by Lades et al. [51]. In this approach, a rectangular grid is centered over
all faces in the gallery. The feature vector is calculated based on Gabor-type wavelets,

computed at all points of this grid. A new face is identified if the cost function, which
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is a weighted sum of two terms, is minimized. The first term in the cost function is
small when the distance between feature vectors is small and the second term is small
when the relative distance between the grid points in the test and gallery image is
preserved. It is the second term of this cost function that gives the “elasticity” of this
matching measure. While the grid of the gallery image remains rectangular, the grid
that is “best fit” over the test image is stretched, under certain constraints, until the
minimum of the cost function is achieved. The minimum value of the cost function
is used further to identify the unknown face.

Other popular template-based face recognition approaches that will only be
mentioned in this work include the isodensity maps approaches [52], [53], fractal-
based approaches [54], DCT feature-based [55], matched spatial filters-based [56]
and natural basis functions-based [57] approaches. Successful template-based face
detection methods using support vector machines and probabilistic framework are

reported in [58] and [59].

2.3 Model-Based Methods

Recently, researchers in computer vision have started to investigate model based
methods for face recognition and detection, and some very promising results have
been obtained. Unlike the template based methods, the model based approaches
allow for greater flexibility with respect to natural face deformations and illumination
conditions. This flexibility is a result of using a mathematical model to incorporate
informations from different instances of faces at different scales and orientations. In
model based approaches, rather than comparing feature vectors that represent face
templates to determine the identity of a face, the face model parameters are used for

recognition.
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2.3.1 The Volumetric Frequency Representation Face Model

Ben-Arie and Nandy [60] proposed a face model that incorporates both the three-
dimensional (3D) face structure and its two-dimensional representation (face images).
This model, which represents a volumetric (3D) frequency representation (VFR) of
faces, is constructed using range image data of a human head. Making use of an
extension of the Projection Slice Theorem, the Fourier transform of any face image
corresponds to a slice in the face VFR. For both pose estimation and face recognition
a face image is indexed in the 3D VFR based on the correlation matching in a four
dimensional Fourier space, parameterized over the elevation, azimuth, rotation in the

image plane and the scale of faces.

2.3.2 Hidden Markov Model Based Methods

Hidden Markov Models (HMM) are a set of statistical models used to characterize
the statistical properties of a signal [61], [62]. HMM’s have been used extensively
for speech recognition, where data is naturally one-dimensional (1D) along the time
axis. However, the equivalent fully-connected two-dimensional HMM would lead to a
very high computational problem [63]. Attempts have been made to use multi-model
representations that lead to pseudo-two-dimensional HMMs [64]. These models are
currently used in character recognition [65], [66].

In [67], Samaria et. al. proposed using the 1D continuous HMM for face
recognition. Assuming that each face is in an upright, frontal position, features will
occur in a predictable order, i.e. forehead, eyes, nose etc. This ordering suggests the
use of a top-to-bottom model, where only transitions between adjacent states in a
top to bottom manner are allowed [68]. The states of the model correspond to the
significant facial features such as forehead, eyes, nose, mouth and chin [69]. The
observation sequence O is generated from an X X Y image using an X X L sampling
window with X x M pixels overlap. Each observation vector is a block of L lines.

There is an M line overlap between successive observations [70].
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Given ¢ face images for each subject of the training set, the goal of the training
stage is to optimize the parameters of the HMM to “best” describe the observations in
the sense of maximizing the probability of the observations given the model. Recogni-
tion is carried out by matching the test image against each of the trained models. To
do this, the image is converted to an observation sequence and then model likelihoods
are computed for each face model. The model with the highest likelihood reveals the

identity of the unknown face.

3 a 3 forehead forehead
3 3 3 3 3 3 eyes eyes
3 3 6 3 3 3 nose nose
5-0-0-8-80 mouth mouth
586 chin chin

Figure 2.1: A HMM with end-of-line states (a) and an unconstrained HMM (b)

In [71], Samaria increased the number of states used to characterize each of the
significant facial features. The observation sequence used with this model is obtained
by sliding a rectangular window from the left to right and from top to bottom of
the image and using the pixels intensities extracted from each window as observation
vectors. To preserve the two-dimensional structure of the data, a marker block was
added at the end of each line in the image, and an additional end-of-line state was
added to the structure of each horizontal HMM (Figure 2.1-a). The end-of-line states
are allowed two transitions: one to the same row of states, and one to the next row

of states. It was found [71] that by setting the initial standard deviation of the
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end-of-line states to be small, and the means close to the intensity of the end-of-line
marker block, the state topology was preserved and the parameters of the end-of-line
states were unaltered after re-estimation. In the same work, it was shown that similar
recognition results were obtained for the unconstrained P2D-HMM structure (Figure
2.1 -b). However, this topology allows a transition to a state corresponding to another
facial feature from a block that is not at the end of a row, and consequently does
not preserve the two dimensional structure of the data. Preliminary results showed
that for this structure, the face recognition results are as high as 95%. However, due
to the large dimension of the observation vectors used, the system required about
four minutes for a face to be recognized on Sparc 20 workstation. Recently,the HMM
with end of line states was used for the segmentation and classification of hand drawn

pictograms [72].

2.4 Summary of the Related Work

Some of the most successful approaches to face detection and recognition were ana-
lyzed. Due to the fact that these methods were tested on different databases, a quanti-
tative comparison can not been presented. The recognition results of the approaches
discussed are summarized in Tables 2.1 and 2.2. In general, the template-based
methods performed at high accuracy when the size of the images was fixed. Although
the scaling of the templates can overcome this problem at the cost of increasing the
complexity of the system, the HMM-based approach represents a more elegant size
invariant method for face recognition and detection. However, the method presented
by Samaria is computational very complex, and therefore impractical for real-time

face detection and recognition systems.
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Approach Training Training Recognition Complexity
Set Set Rate

Correlation [2] 47 subjects Not

47 subjects 4 images 100% specified
per subject

Correlation [18] 62 subjects | 62 images 10-15min
15 images 10 images 98.7% on Sparc 2
per subject | per subject

Eigenface [19] 16 subjects | 2500images | variations in:
one image from 16 size 64% 350 msec
per subject subjects | orientation 85% Sparc 1

lighting 96%

Eigenface 21 subjects higher than the
Parametric [3] 21 subjects | 9 images 78%-88% view -based
per subject approach
Eigenface 21 subjects lower than the
View based [3] 21 subjects | 9 images 83%-90% parametric-based
per subject approach
Eigenfeatures [3] | 45 subjects | 45 subjects Not
one image | one image 95%-98% specified
per subject | per subject
KL-FSAT [27] 269 subjects | 100 images higher than
one image b images 91% eigenface
per subject | per subject method
Fisherfaces [29] 16 subjects | 16 subjects lower than
9 images one image 99.4% eigenfaces

per subject

per subject

Table 2.1: Comparison of some of the face recognition approaches
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Approach Training | Training | Recognition | Complexity
Set Set Rate
SVD [35], [37] 8 subjects | 40 images high due
3 images 5 images 100% to SVD
per subject | per subject calculation
Auto Association and 40 subjects | 40 subjects Not
Classification NN [42], [73] | 5 images bimages 20% specified
per subject | per subject
PDBNN [45] 40 subjects | 40 subjects 0.1 sec
5 images 5 images 96% on SGI Indy
per subject | per subject 100 MHz
Convolutional NN [43] 40 subjects | 40 subjects 0.5 sec
5 images 5 images 96.2% on SGI Indy
per subject | per subject 100 MHz
Dynamic Link 40 subjects | 40 subjects Not
Matching [51], [73] 5 images 5 images 80% specified
per subject | per subject
VFR [60] 40 subjects | 40 subjects 320 sec on
5 images 5 images 92.5% Pentium
per subject | per subject 200MHz
HMM [74] 40 subjects | 40 subjects 12 sec on
D images D images 85% Sparc 2
per subject | per subject
HMM [71] 40 subjects | 40 subjects 4 min on
5 images 5 images 90-95% Sparc 2

per subject

per subject

Table 2.2: Comparison of some of the face recognition approaches (cont’d)
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CHAPTER 3

A Deformable Template - Based
Approach for Face Detection

The goal of the system described in Figure 1.1 is to efficiently detect and recog-
nize human faces, independent of the background, lighting conditions, face size and
orientation, gender, race, age, hair style, eye wear (glasses/no glasses) and facial ex-
pression. Conceptually there are two main approaches for face detection that can
be used. One is to compare every location in a given image with a face template or
model and to determine the face location based on some error measure between the
local image and the face model or template. This method has the advantage that
the detection does not depend on the background, the number of people in the scene,
or their relative position in the scene. However, due to the exhaustive search at all
locations in the scene, this method is generally slow and, therefore, more difficult to
use in real time applications. This approach will be discussed later in more detail
when we present an HMM based approach for face detection and recognition. An-
other approach to the face detection problem [75] is to segment the foreground from
the background, locate the position of the head from the foreground, and then use the
head location to decide if it corresponds to a frontal face by comparing the local image
to a face template or model. This method is more dependent on the background and
on the number of people in the scene than the previous method, but under certain
conditions, to be discussed later, can perform with high accuracy at a higher frame

rate than the first method. This chapter focuses on the second method and presents



a deformable template-based approach for real-time face detection [76] from gray
scale video sequences. The goal of our system is to efficiently extract human faces,
independent of their size and orientation, from a known but uncontrolled background.
A deformable template based model has been used to describe the human face. An
eye detection module processes the extracted faces to determine the frontal faces for

further processing.

3.1 System Overview

This section describes the overall face detection system which is shown in Figure 3.1.

It has been shown experimentally [77], [33], [78], [79] that the skin color can be

Deformable Eye Region

Template Constraints
*ﬁ o f

Head Detection | No Eye Detection Face Tracking Best Face Selection

i

Foregroround
Regions

Video }
Sequence Background
Segmentation
Background
Model
Background
Adaptation

Figure 3.1: Overall deformable template - based face detection system

successfully used to detect the approximate location of faces in an image. The precise
location of a face can be determined by analyzing other facial features in more detail.
Unlike color images, in gray scale images the gray levels of the faces are often found
in the background. Therefore the use of face gray level information disregarding any

structural information of faces is not appropriate for face detection from gray scale
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images.

In the first stage of our system, the pixels of each frame of the video sequence are
segmented into background and foreground pixels based on a statistical model of the
background pixels. The pixels with large deviations from the background model are
taken to be foreground pixels. The set of connected foreground pixels determine the
foreground regions. If the sizes of all the foreground regions, given by the total number
of pixels inside a foreground region, fall below a fixed threshold, then the system
assumes that no object is in a scene and updates the description of the background
using the last frame of the video sequence. If one or more of the foreground regions
exceeds the threshold, then the system assumes that these regions correspond to
people in the scene and looks for the head position. The head position is determined
by fitting an ellipse around the upper portions of the foreground regions. In fact,
the head detection problem is reduced to finding the set of parameters (xg, yo, a, b)
that describe an elliptical deformable template. Parameters xy and y, describe the
ellipse centroid coordinates, and 2a and 2b are the ellipse axis. The pose of the head
is determined by running an efficient eye detection algorithm. The position of the
head within each frame is tracked over consecutive frames. For each track, one or
more faces that achieve the best overall scores, are tagged so that they may be used
in a face recognition system. The overall face score incorporates a measure of how
well data in each foreground region describes a frontal face according to the head
deformable-template, and the pose of the head as determined by the location of the
eyes and the size of the face. A detailed description of each of the blocks of Figure

3.1 is given in the later sections in this chapter.

3.2 The Segmentation of the Foreground Regions

The first stage of the system is the segmentation of foreground from background. The

goal in this stage is to find all pixels in a frame of the video sequence that correspond
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to objects other than those in the background. We assume that the background is
known and stationary. This assumption is easily achieved if the position of the camera
is fixed and the background does not change significantly over time. This scenario
corresponds to indoor scenes such as stores, banks or laboratory environments. It is
also assumed that several samples of the background over time are obtained during
the initialization of the system.

With the above assumptions, the background scene is modeled as a texture with
the intensity of each pixel given by a Gaussian density function with mean g and vari-
ance o, N(up, 0p). The values of 1, and oy, are obtained from the background samples.
The pixels in each frame are classified as foreground if p(O(x, y)|N(u, 0p)) < T and
as background if p(O(z,y)|N (s, 05)) > T. The observation O(z,y) represents the
intensity of the pixels at location (z,y) and T is constant threshold. The connectivity
analysis of the foreground pixels generates connected sets of pixels, i.e. sets of pixels
that are adjacent or touching. Each of the above sets of pixels describe a foreground
region. Small foreground regions are assumed to be due to shadow, camera noise and
lighting variations and are removed.

The background model (the mean and variance) is updated, using the pixel
intensities in frames where no people are detected. The background adaptation algo-
rithm [80], allows for robust foreground background segmentation in the presence of

illumination variation or shadowing effects.

3.3 The Deformable Template for Head

It is common to approximate the support of the human face by an ellipse [81], [14],
[82], [83], [84] since an ellipse provides a good approximation of the head shape for
a large range of views obtained from rotations in both the image plane and in a plane
perpendicular to the image plane. A deformable template of elliptic shape also allows

for variations in the size of the head. The deformable template is parameterized by
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the set (xg, yo, a,b) where xy and yo, are the coordinates of the ellipse centroid and
a and b are the axis of the ellipse (Figure 3.2). The set (zo,yo,a,b) is determined
2ka

2kb

Figure 3.2: The deformable template for face

for each foreground region through an efficient ellipse fitting algorithm that will be
descried later in this chapter. It is, however, very important to find a measure of
how well the deformable template characterizes the available data i.e. the foreground
region. For this, we define a rectangular template, W in Figure 3.2, that has the
same center (xg, o) as the ellipse template. The sides of the rectangular template are
proportional to the axes of the ellipse, 2ka and 2kb in Figure 3.2, where k is some

constant. The head score Sj.qq is defined according to the following equation:

Shead =
Yr f(O(@,y) + Xk, b(O(z,9))
Yk 0(O(z,y)) + Xk, f(O(2,9) + Xk, b(O(2,y)) + Xk, f(O(2,9))

where b(O(z,y)) and f(O(x,y) are the background and foreground functions that are
defined by

(3.1)

1L if p(O(z,y) [N (s 03) > T
b(O(z,y)) =
0 ,otherwise
and

L if (p(O(, y) [N (up, 00)) < T

0 ,otherwise

f(O(z,y) =
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In equation 3.1, R, denotes the set of pixels inside the ellipse and R, denotes the set
of pixels inside the rectangular template and outside the ellipse. The above score can
be interpreted as the number of pixels in the rectangular template correctly classified
by the elliptical template, since we expect that all pixels inside the ellipse to belong
to the foreground while all the pixels outside the ellipse and inside the rectangle to
belong to the background. It is also important to note that Sje.q is normalized such
that 0 < Sheqeq < 1. This score plays a very important role in our approach and will
be used in the next stages to determine the number of people in a foreground region,

and to identify the best face out of a face track.

Figure 3.3: The head detection algorithm

3.4 The Head Detection Algorithm

In this section we will assume for simplicity, that each foreground region corresponds
to only one person in the image. However, this might not always be the case. Due to

body occlusions or shadowing effects, a given foreground region may contain, more
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than one person, particularly in crowded scenes. This case will be discussed later
in this chapter. Assuming that each foreground region corresponds to one person,
the head is detected by fitting an ellipse around the upper portion of the foreground
region. The ellipse parameters xg, ¥y, @ and b are related through the following equa-

tion:

((z = x0)/a)” + ((y — 90) /b)* = 1 (3.2)

The objective in an ellipse fitting algorithm is to find the estimated parameters
Zo, Yo, @ and b of the ellipse that best describe a given contour. A general tech-
nique for fitting an ellipse to a contour or region is the use of the Hough Transform.
However, the computational complexity of the Hough Transform as well as the need
for a robust edge detection algorithm make it inappropriate for real-time applications.

Our approach for ellipse fitting is an inexpensive recursive technique that reduces
the search for the ellipse parameters from a four dimensional space (%o, %o, G, 5) to a
one dimensional space. The parameter space of the ellipse is reduced based on the

following observations:

1. The centroid of the ellipse is located on the so called vertical skeleton of the
region representing the person (Figure 3.3). The vertical skeleton is computed
by taking the middle point between the left most and the right most points
for each row of the region. Since the centroid of the ellipse is on the vertical
skeleton, the estimated width of the ellipse @ is given by the distance between the
left most and right most point of a foreground region at the line corresponding

to the position of the estimated centroid of the ellipse.

2. The b parameter of the ellipse (the height) can be calculated as the distance
between the highest and the lowest point of the vertical skeleton within the
head region (Figure 3.3). The highest point of the head region corresponds to
the top of the skeleton since it is assumed that people are oriented vertically.

However, finding the lowest point of the head region is generally very difficult
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Figure 3.4: The ellipse fitting algorithm

to obtain with high accuracy due the difficulties in finding the chin line. The
chin line does not represent an edge between the background and foreground
region since it is entirely contained within the foreground region. Therefore a
more complex edge detection technique must be used to determine the lower
contour of the face. In our approach we avoid the problem of finding the chin
edge by taking advantage of the fact that the aspect ratios of the ellipses (%)
representing faces cluster in a small range. Specifically, we have found that the
aspect ratio generally falls within a narrow range centered around M = 1.4.

Therefore our deformable face template is constrained to have an aspect ratio

of 1.4.

From the above observations it is clear that the problem of finding the ellipse
parameters is reduced to finding the point on the vertical skeleton that “best” satisfies

the constraint imposed by the aspect ratio of the ellipse. This is equivalent to finding
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Yo on the vertical skeleton that minimizes the error:
e=b—Ma (3.3)
The position of g is iteratively computed using at each iteration k£ a linear estimate
Jo ) = o™ + pe(k) (3.4)
where,
e(k) = b® — pma® (3.5)

and p is a constant such that 0 < p < 1. The ellipse fitting algorithm is illustrated in
Figure 3.4. First the edges of the foreground regions are obtained, and the vertical
skeleton is computed. The edges of the foreground region are found by choosing the
left most and right most point at each line in a foreground region. The elements of
the vertical skeleton are positioned on each line at the midpoint between the left and
right edge of the foreground region, in the same line.

The initial estimate for the y-coordinate of the ellipse centroid, g,(0) must be
chosen close enough to the top of the object on the vertical skeleton in order for
the algorithm to perform well for all types of sequences from head-and-shoulder to
full-body sequences. Specifically, if the initial centroid is chosen far from the top of
the vertical skeleton, then the algorithm may converge to an ellipse that describes the
whole body of the person. In our experiments, the distance from the initial centroid
to the top of the vertical skeleton is chosen to represent 10 % of the height of the
vertical skeleton.

The width of the ellipse at iteration k, a*) is equal to the distance between the
right most and left most point of the foreground region at the line corresponding to
the current centroid position, gj(()k). Similarly the height of the ellipse at iteration £, b()
is the distance between the current estimate of the centroid of the ellipse and the top
of the vertical skeleton. The error at iteration k£ is computed according to Equation

3.5 and the new centroid position is re-estimated according to Equation 3.4. The
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iteration stops when the distance between two consecutive centroids is smaller than
a threshold.

Convergence of the Head Detection Algorithm
Next we will show that the above algorithm converges to the correct ellipse parameters
that best fits an elliptical contour. Let the parameters of the elliptical contour be
Xo, Yo, @ and b. From Equation 3.2, the distance between the right most and left most

points of the ellipse corresponding to 7o(k) are determined by:

i) = 201/1 — (38" ~ o) /Ma? (3.6
and the distance between the top of the vertical skeleton and yy(k) is determined by:
b*) = yo + Ma — G (3.7)

Hence, for u = 1, equation 3.4 becomes:

D — g = Ma — May/1 — (5F — o) /Ma)? (3.8)

From the above equation it can be shown that:

~ 2 ~ 2
|y(()k+1) —yo| < |y(()k) — Yol (3.9)

for any gj(()k) for which |gj(()k) — yo| < Ma. This shows that the recurrence defined in
equation 3.4 converges to yg.

The head model can be more complex, and can include information from the
eyes as well as other facial features. Using only a simple model for the human face
may lead to the detection of objects that do not correspond to faces. These objects
are removed in the next stage of our system by running an efficient eye detection

algorithm, which will be described later in this chapter.

3.5 Region Splitting

The presence in a scene of people that are partially occluding each other leads to

the generation of foreground regions that correspond to more than one person, and
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therefore results in a failure of the head detection algorithm presented above. Based
on the assumption that people in a scene are oriented vertically (not lying down or
sanding on their heads) and that their faces are not occluded (although their bodies
might be), there is a vector xx = {21, %s,...,2Zx 1} that represents the horizontal
coordinates of the vertical segments that separate a foreground region of K people
into K disjoint regions, each corresponding to one person. The overall score Hg
of a foreground region computed under the hypothesis that it represents K people,
combines the individual scores of each person, such as a weighted sum of the individual

scores S;(x;, Tiv1).
K
Hi (xx) =Y Si(wi, i1 )w; (3.10)
i=1
The individual scores S;(z;, ;1) are obtained from equation 3.1 computed in a
region bordered by the vertical lines of horizontal coordinates x;, x;,1. This score can

also incorporate information about the size of the ellipse templates. The score of the

foreground region under the hypothesis that it represents K people is given by:

HK = max HK(XK) (311)

all xXg
The score of the foreground region is obtained as the best score of the foreground

region under all hypothesis:

H = max max Hp(xk) (3.12)

As shown from the above equation in order to determine the foreground score, there

are two optimization problems to be addressed. First is to find the number of people

that best represent a foreground region, and second is to determine the set of vertical

lines that best separate among people in the foreground region. To solve this double

optimization problem, we first generate a set of hypothesis, each describing the num-
P

ber of people in each foreground region. For each hypothesis, the vector x}t is found

as the vector that maximizes the score of the foreground region Hp.

x?" = arg max Hy (Xg) (3.13)

all XK
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The best score H for each hypothesis represents the score of the foreground region
under the hypothesis that the foreground region corresponds K people. Second the
number of people that best represent the foreground region, N is obtained by

choosing the best score of the foreground regions among all hypothesis:
N = argmax Hy (3.14)
allK

In general, finding the vector x is difficult and becomes less accurate as the number of
people in a foreground region increases since the head model considered here is very
simple. However, in face recognition applications, it is not necessary to consider very
crowded scenes since the faces in a crowded scene will typically be too small to be
recognized. Under the assumption that no more than two people are in a foreground
region, the system performed well on a large variety of sequences. Figure 3.5 shows a
synthetic example of correct segmentation of a foreground region corresponding to one
and two people. Figure 3.6 show the same example with an erroneous segmentation.
The dashed ellipse shows the actual position of the ellipse found using our ellipse
fitting algorithm. Unlike the score obtained in Figure 3.5 - a, the overall score in
Figure 3.6-a computed using Equations 3.10 and 3.1 is small since both detected
ellipses contain a large number of foreground pixels outside their contour. Therefore,
the system will choose Figure 3.5-a as the correct foreground region segmentation.
Similarly Figure 3.5-b and 3.6-b show two possible segmentations for a foreground
region containing two people. The foreground region score computed according to
Equation 3.10 is lower in Figure 3.6-b than in Figure 3.5-b because the segmentation
there are a large number of background pixels inside the contour of the detected ellipse

in Figure 3.6-b.

3.6 The Eye Detection Algorithm

A detected ellipse is a potential region of support for a human face. After the detection

of these regions, a more refined model for the face is required in order to determine
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Figure 3.5: An example of correct segmentation of a foreground region representing

(a) one person (b) two persons

which of the detected regions in previous stages correspond to valid faces. The use of
an eye detection algorithm in conjunction with the head detection module improves
the accuracy of the head model and discards regions corresponding to back views
of faces or other regions that do not correspond to a face. The results of the eye
detection algorithm are used to estimate the face pose and to determine the image
containing the most frontal pose among a sequence of images. This result may then
be used in recognition and classification systems.

There are many approaches in the computer vision literature to eye detection
from known poses, more often frontal views [12], [2], [9]. However, the assumption
of dealing with frontal faces is not valid for real world applications. Pentland et.al
[3], described a template based approach for eye detection from unknown poses. This
method requires to build one feature space for all poses of interest and also implies
an exhaustive search for the eye position at all locations in a test image. In addition
this method is inflexible to variations in scale of the faces and eyes. In this section we
describe an efficient, scale invariant algorithm for eye detection and pose estimation.

The algorithm makes use of the head location and the a priori knowledge of the size
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Figure 3.6: An example of incorrect segmentation of a foreground region representing

(a) one person (b) two persons

and position of the eyes given the size of the face. Figure 3.7 shows the steps of the
eye detection approach. In the first stage, the pixel intensities inside the face regions
are modeled using a Gaussian density function with mean gy and variance oy. Since
most of the pixels in a face region have the skin gray level, the statistics py, o of the
pixels in this region will be close to the statistics of the pixels that represent the face
skin. Pixels that are far from the face statistics i.e. P(O(x,y)|ps,0r) < Ty where
O(x,y) is the pixel intensity at (x,y) and T} is a threshold, are assigned to facial
features other than the skin.

A connectivity analysis of the extracted pixels generates connected sets of pixels,
i.e. sets of pixels that are adjacent or touching. Each of these connected sets of pixels
describe a region of the face that is different from the statistics of the skin gray level,
such as hair, nose or eyes. These regions are further analyzed based on their size,
i.e. the number of pixels in a region, and the relative position of their centroids, to
determine which of them can represent the eyes in a face.

Given a frontal view of a face, one may expect to find the eyes in a rectangular

window, or eye band, centered around the centroid of the ellipse such as W, in
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Figure 3.7: The eye detection block diagram
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Figure 3.8: The regions of interest for eye detection

Figure 3.8. If frontal views are assumed, the size of the eye band can be chosen
to include only non face regions that correspond to eyes. However, as mentioned
before, the assumption of frontal faces is not valid in a real world environment. If
non frontal views are considered, some regions inside W,,. may correspond to hair.
Furthermore, these regions are in general close in size and intensity to the eye regions.
Therefore, under the assumption of varying poses, the simple inspection of distances
between the centroids of the regions and their relative positions inside the eye band
cannot indicate which regions correspond to the eyes. Alternative approaches that
use template or edge information may be used to detect the eyes in a more robust way,
but these methods are in general very complex and sensitive to scaling variations.
In this section we present a simple method to discriminate eye and hair region
by analyzing the size of the non-face regions in a larger window around the upper
portion of the face such as Wyyee—yp in Figure 3.8. First, the regions having a small
number of pixels due to camera noise or shadows are removed. Second, large regions

can not represent eyes and correspond in general to hair. The size of the regions
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selected at this stage is in the interval [0,,, f)/] where 6,, is the minimum and 6,; is
the maximum number of pixels allowed by our system to describe a valid eye region.
Threshold values 6, and 6,, are relative to the size of the ellipse that characterizes
the head region.

In the last stage of our approach, the selected regions inside the eye band W.ye
are further analyzed based on the relative distances between their centroids. The
eye regions are identified by analyzing the minimum and maximum distance in both

horizontal and vertical directions between the regions inside this band.

3.7 Results and Conclusion

The approach presented in this chapter has been implemented on a PC platform
with the aid of simple commercial devices such as an NTSC video camera and a
monochrome frame grabber. The approach has been tested in a variety of scenarios
from head-and-shoulder to full-body sequences, including scenes that contain one or
more people and where human bodies (but not heads) occlude each other. This large
set of sequences was obtained by running the system in a company environment for
over four months.

Figures 3.9- 3.12 show some of the results obtained by running the system in a
laboratory environment.  These figures illustrate four different scenarios generated
to demonstrate the performances under different conditions such as non-frontal poses,
multiple occluding people, back views, and faces with glasses. In Figure 3.9 the face
of a single person is detected. In this figure the ellipse is properly fitted around the
face and the eyes are detected even with glasses. Figure 3.10 shows the back view of
a single person in the scene. In this figure, the ellipse is fitted around the head, but
no eye is detected indicating the robustness of the eye detection module. Figure 3.11
and 3.12 show two scenarios in which two people are present in the scene. In both

figures, the body of one person is covering part of the body of the other person. In
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Figure 3.9: An example of face detection in a head-and-shoulder scenario

Figure 3.10: An example of face detection for a back view of a head
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)

Figure 3.12: An example of face detection in the presence of two people in the presence

of partial body occlusion
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both cases the face and eyes are detected. The fact that the system is able to extract
the faces and eyes in situations with body occlusion is a strong merit of the proposed
approach. In Figure 3.12 the face of the person in the back has a non-frontal position.
Also due to different distances from the camera the size of the two faces are different.
The faces of both persons are detected indicating the robustness of the system to

variations in parameters such as size and position of the face.
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CHAPTER 4

A Hidden Markov Model for Face

Detection and Recognition

Hidden Markov Models (HMM) have been successfully used for speech recognition
and more recently in gesture [85] and action recognition [86], lipreading [87] or
video indexing [88] where data is one dimensional over time. Successful HMM based
methods were reported in recent years also for character recognition [66], [89], word
spotting [90] and face recognition [71]. The use of an HMM for face recognition
is motivated by their partial invariance to variations in scale and by the structure
of faces. This chapter describes an efficient HMM based face recognition approach
[91], and presents a new face detection method [92] that uses an HMM for faces.
Unlike previous HMM based approaches for face recognition which use pixel intensi-
ties as observation vectors, in our approaches for both face detection and recognition
the observation vectors are obtained from either the two-dimensional Discrete Cosine
Transform (DCT) coefficients or from the Karhunen Loeve Transform (KLT) coeffi-
cients. The advantage of using image transform coefficients instead of pixel intensities
include reduced sensitivity to noise, and the possibility of reducing the dimension of

the observation vector by eliminating coefficients that are negligible in magnitude.



4.1 The Hidden Markov Model

A hidden Markov model consists of a Markov chain with a finite number of states,
a state transition probability matrix, and an initial state probability distribution.
Although the states are hidden (not directly observable), each state generates obser-
vations that are drawn according to some probability distribution (either discrete or

continuous) [62]. The elements of an HMM are:

1. A set of N states, S = {S1,53,..., Sy}, with the state at time ¢ denoted by
q; € S.

2. The initial state probability distribution, IT = {m;}, where

3. The state transition probability matrix, A = {a;;}, where
aij = Plg = Sjlgi—1 = Si] ,1 < i, 5 < N, (4.2)
with 0 < a;; <1 and the constraint that

N
> aj=1,1<i<N
j=1
4. The probability distribution matrix for the observations, B = {b;(O;)}, where
b;(O,) is the probability of observation O, at time ¢ given that the state is
qy = Sja
bj(Or) = P(O¢lq: = S;)
In a discrete HMM, the observation symbol probability is defined as:

b](k):P[Ot:Uk|qt:S]], 1§]§N (43)

where V' = {vy, v9,...,up} is the set of all possible observation symbols (also
called the codebook of the model), and M is the number of different observation

symbols.
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In a continuous density HMM, the observations are characterized by continu-
ous probability density functions. A general representation for the probability
density function is a finite mixture of the form
M;
b;(0y) = > i N(Oy, pi, Ui) , 1 <i < N (4.4)
k=1
where ¢;; is the mixture coefficient for the kth mixture in state i. Usually,
N(Oy, ptig, Ujr) is a Gaussian density with g, the mean vector, and Uy, the

covariance matrix.

A tied-mizture HMM 1is one in which all Gaussian components are stored in
a pool and all state output distributions share this pool such that the output
distribution for state 7 is defined as:
M
bi(Oy) = ];CikN(Ota,uka Up), L<i <N (4.5)
The above equation differs from Equation 4.4 in that the Gaussian component

parameters and the number of mixture components are state independent.

Using a shorthand notation, a HMM is defined as the triplet
A= (A,B,1I). (4.6)

The use of an HMM for face modeling is motivated by their partial invariance to

scaling and by the structure of the face. For frontal face images, the significant
facial regions (hair, forehead, eyes, nose, mouth) come in a natural order from top
to bottom, even if the images are taken under small rotations in the image plane
and/or rotations in the plane perpendicular to the image plane. Each of these facial
regions is assigned to a state in a left to right 1D continuous HMM with diagonal
covariance matrix. Before a hidden Markov model may be used for face recognition,
we must define the structure of the HMM, which includes the number of states, the
set, of allowable transitions, and the observations that are produced by each state.

The model that we have used is a 6-state left-to-right HMM, where the states are
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Figure 4.1: A five state face HMM

used to represent hair, forehead, eyes, nose, mouth, and chin (a 5-state version of this
model is shown in Figure 4.1). Although HMM’s are able to model one dimensional
data such as speech signals over time, images are two dimensional. In next section

we will describe how to obtain the observation sequence from the face images.

4.2 The Observation Vectors

Given an image W pixels wide by H pixels high that contains a face, image blocks
of L rows are extracted and used to form the observations (Figure 4.2). Adjacent
blocks are allowed to overlap by P rows. This overlapping allows the features to be
captured in a manner that is independent of vertical position, while a disjoint parti-
tioning of the image could result in the truncation of features occurring across blocks
boundaries. Using a small value for L can bring insufficient discriminant information
to the observation vector, while using a large value for L increases the probability of
cutting across the features. However, the system recognition rate is not very sensitive
to variations in L, as long as P is large (P < L — 1) and L ~ H/10 . In [74] the
observation vectors consist of all the pixel values from each of the blocks, and there-
fore the dimension of the observation vector is L x W (L = 10 and W = 92). The
use of the pixel values as observation vectors has two important disadvantages: First,
pixel values do not represent robust features, since they tend to be very sensitive

to image noise as well as image rotation, shift, or changes in illumination. Second,
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Figure 4.2: Face image parameterization and block extraction

the large dimension of the observation vector leads to high computational complexity
of the training and detection/recognition system, and therefore increases the pro-
cessing time required for both face detection and recognition. This can be critical
for a face recognition system that operates on a large database, or when the detec-
tion/recognition system is used for real time applications. Instead of using the pixel
intensities within each L x W image block, we form an observation vector from the
coefficients from either the Karhunen Loeve Transform (KLT) or the two-dimensional
Discrete Cosine Transform (2D - DCT) of each image block.

The optimal compression properties of the KLT as well as its decorrelation
properties make it an attractive transform to use to extract the observation vectors.
The KLT is an adaptive transform i.e. the basis functions of this transform depend
on the signal to which it is applied. The basis functions of the KLT which are the

eigenvectors of the covariance matrix of all input samples, are obtained as follows:

1. The image blocks extracted from all the images in the training set are arranged
(r)

as vectors by concatenating the columns. Let x;’ be the vector obtained from

the ith block of the rth face image.

2. The sample mean of the vectors is computed according to:
R T

1 r
quZZxﬁ) (4.7)

r=1i=1
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where R is the number of face images in the training set and 7 is the number
of blocks extracted from the rth image. A new set of vectors is obtained by

(r)

1

subtracting the mean from all x

%) =x" —u (438)

(r)

Since the vectors x; ’ are characterized by zero statistical means, they can be

used to determine the set of basis functions for the KLT.

(r)

3. The covariance matrix of the vectors x; ’ is computed according to:

1 &SN o)
~(r) /~(rI\T
r=1 r=1 =1
and the normalized eigenvectors uy of the covariance matrix are determined by

Cu, = Mgug with A the eigenvalue corresponding to the eigenvectors of the

covariance matrix C.

Figure 4.3 shows the mean and the first five eigenvectors corresponding to the five
largest eigenvalues. The mean vector models the structure of the set of face blocks.
Note that, the values of the middle elements of the mean vector represent the average
face gray level, while the first and last set of elements describe the average values
of the hair or background which, in our database, is darker than the face. Looking
at the eigenvectors, we see that they capture facial significant features, which are
evident in Figure 4.3. It is also important to notice that all eigenvectors tend to
be symmetric. This is not unexpected, since all faces in the database correspond to
frontal views, and therefore the faces approximately symmetric with respect to an
vertical axis that goes through the center of the face. Once the basis functions were
obtained, the observation vectors were formed from the image blocks in both the

training and testing sets using the following procedure:
1. The image blocks are arranged columnwise to form vectors.

2. The mean computed in 4.7 is subtracted from each vector.
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3. The resulting vectors are projected onto the eigenvectors of the covariance ma-
trix corresponding to the largest ten eigenvalues )\;. The coefficients of the

projections form the observation vector.

It should be noted that only the first few coefficients have significant values and that
they tend to decrease with the index. Coefficients of index ten or larger are ignored
since their values are negligible. Figure 4.4 shows some typical observation vectors
for blocks corresponding to some significant facial regions are illustrated.

The use of KLT to obtain the observation vectors has however the disadvan-
tage of requiring the computation of the basis functions from a large number of face
images. An alternative is to use the two-dimensional DCT (2D DCT) to form the
observation vectors. There are several reasons for using 2D DCT coefficients as ob-
servation vectors. First, many of the DCT coefficients tend to be small, and those
that are large are generally concentrated around the low frequencies. For example,
shown in Figure 4.5 are five sets of DCT coefficients corresponding to image blocks
that contain specific facial features, e.g., eyes or nose. What is clear is that only a
small number of the coefficients may be considered to be significant. Therefore, keep-
ing only those coefficients that are large will result in a reduction in the dimension
of the observation vectors, which leads, in turn, to a decrease in the complexity of
the recognition system. The second advantage in using DCT coefficients instead of
pixel intensities is that the DCT coefficients tend to be less sensitive to noise, image

rotations and shifts, and changes in illumination.

4.3 Training The Face HMM

The process of training an HMM for face detection and for face recognition is similar.
The only difference lies in the images that are used for training. For face detection,
the images in the training set represent frontal faces of different people taken under

different illumination conditions. All of the face images in the training set are used to
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Figure 4.3: The average (a) and the first five eigenvectors (b-f) of the covariance

matrix for the face blocks.
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Figure 4.4: An example of KLT coefficients (first 40) extracted from face blocks

corresponding to (a) hair, (b) forehead, (c) eyes, (d) nose and (e) mouth.
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An example of 2D-DCT coefficients extracted from face blocks corre-

Figure 4.5

sponding to (a) hair, (b) forehead, (c) eyes, (d) nose and (e) mouth.
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Figure 4.7: The initial face segmentation for the face HMM

train one HMM. For face recognition, each individual in the database is represented
by an HMM face model. A set of images representing different instances of the same
person are used to train each HMM.

After extracting the blocks from each image in the training set, the observation
vectors (DCT or KLT coefficients) are obtained as explained in the previous section,
and used to train each of the HMMs. In our system, we used L = 10 rows of length
W = 92 (for a total of L x W = 920 pixels per block), with an overlap of P = 8
rows between blocks (Figure 4.2). We used as observation vectors either 39 DCT
coefficients (a 3 x 13 array of low-frequency coefficients), or ten KLT coefficients
(corresponding to the largest ten eigenvalues). The use of these observation vectors
results in a dimensionality reduction by a factor of approximately twenty-three for
the DCT based observation vectors and ninety two for the KLT based observation
vectors. Given a set of faces that form the HMM training set, the procedure used to

train the hidden Markov model is as follows.

1. First, the training data is uniformly segmented (Figure 4.7), from top to bot-
tom, according to the number of states of the HMM, and the observation vectors
associated with each state are generated and used to obtain initial estimates of

the observation probability matrix B. The goal of this stage is to find a good es-

49



timate for the observation model probability B. In [62], it has been shown that
good initial estimates of the parameters are essential for rapid and proper con-
vergence (to the global maximum of the likelihood function) of the re-estimation
formulas. The initial values for A were set so that they are consistent with the
top to bottom structure of the model, i.e., a;; = 0 for j < ¢ and j > i+ 1, which
means that we can only make a state transition from state ¢ back to itself, or
into the next state ;7 = ¢ + 1. For the initial state probability distribution, we
set m; = 1 and 7; = 0 for 7 # 1, i.e., the HMM begins in the first state.

. At the next iteration, the uniform segmentation is replaced by the Viterbi seg-
mentation. The result of segmenting each of the training sequences is, for each
of N states, a maximum likelihood estimate of the set of observations that occur
within each state according to the current model. The iterations continue until
the Viterbi segmentation likelihood at consecutive iterations is less than some

threshold. At this point the parameters of the HMM are initialized.

. Following the model initialization, the model parameters are re-estimated using
the Baum-Welch re-estimation procedure [93]. This procedure adjusts the
model parameters so as to maximize the probability of observing the training

data, given each model.

. The resulting model is then compared to the previous model (by computing a
distance score that reflects the statistical similarity of the HMMs). If the model
distance score exceeds a threshold, then the old model A is replaced by the
new model 5\, and the overall training loop is repeated. If the model distance
score falls below the threshold, then model convergence is assumed and the final

parameters are saved.
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4.4 Face Recognition Using HMM

To use an HMM for face recognition, we begin with an image of a face that is to be
recognized. First, the observation sequence is generated by scanning the image, from
top to bottom, forming image blocks of L rows, and extracting the observation vectors
for each block. Then, the probability of the observation sequence given the HMM
model for each face is found using the Viterbi algorithm. The model with the highest
likelihood is selected, and the model reveals the identity of the unknown face (Figure

4.8). This system was tested on the Olivetti Research Ltd. (ORL) database [94],

Test
Image Viterbi
Block
Extraction

> Viterbi
Model
Feature —  Maximum Recognized
" ——

Extraction 1 Selection

i

—  Viterbi —

Figure 4.8: Face recognition using HMM

which consists of 400 images of 40 individuals (10 faces per individual) where each
image is 92 x 112 pixels. Within this database are faces of males and females of
different ages, with different facial expressions, hair styles, and eye wear (glasses/no
glasses). Using half of the images to train the HMM, and the other half for testing,
the recognition rate for Samaria’s one-dimensional HMM [74] was 84%, whereas for
our system it is slightly higher at 86%. However, it should be pointed out that this

slight increase in the recognition rate is obtained along with a significant decrease
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Figure 4.9: Face recognition results using HMM
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Figure 4.10: Face detection using HMM

in computational complexity that comes from the reduction in the dimension of the
observation vectors from 920 down to 39, for the DCT based observation vectors or

from 920 to 10 for the KLT based observation vectors.

4.5 Face Detection Using HMM

In this section, we investigate the performance of HMM to the problem of face de-
tection. The goal of a face detection system is to locate the position of all faces
within an image. If such a system is to be robust, then it must be able to detect
faces of males and females of different races, independent of their appearance (facial
hair, glasses/no glasses), and it should be insensitive to the size of the face within the
image, the orientation of the head, and the background surrounding the face. One of
the advantages in using an HMM for face detection compared to other approaches,
such as template-based methods, is that it is partially invariant to deformations (scale
and orientation) in the vertical direction.

The overall face detection system is illustrated in Figure 4.10. Since in our
approach no assumptions are made with regard to the background, the face likelihood
is computed for all rectangular patterns in the face image. The face likelihood for each
pattern is given by the Viterbi likelihood weighed by a state duration correction factor.

The rectangular patterns for which the face likelihood increases a fixed threshold are
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Figure 4.11: Block extraction for face detection using HMM

taken as valid faces.

Before we describe the face detection algorithm in more detail, it is important
to notice that in this approach we can exploit the large overlap of the rectangular
patterns and decrease the complexity of the face detection. In template based meth-
ods, the template features are extracted individually from each rectangular patterns
and no computation can be saved even for the rectangular patterns that have large
overlaps. By taking advantage of the vertical overlap of the rectangular patterns, in
our approach the computation of the state probabilities for the observation vectors
corresponding to overlapping regions can be saved. Based on this observation, the
first step in our face detection approach is to extract the image blocks from a test
image, followed by the computation of the observation vectors and the corresponding
state probabilities. The image blocks are extracted by scanning the test image from
left to right and from top to bottom. The blocks have the same width, height, and

vertical overlap as those used in training. The horizontal overlap between blocks can
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be chosen arbitrarily. An increase in the horizontal overlap, results in an increase in
the precision of the detection system at the cost of increasing the complexity. Given
an image of size W x H, let W; be the width and H,, and H,; be the largest and
smallest height of the face that we wish to find in the image (Figure 4.12). To detect
a face of width Wy, and any height H;, H,, < Hy < Hj;, the number of blocks that

are extracted in the horizontal direction, 77, and the vertical direction, T}, is

W — L,

A 4.10
L.—p, " (4.10)
H-L

T, =—341 4.11

where P, and P, represent the amount of overlap between successive blocks in the
horizontal and vertical direction, respectively, and L, and L, are the height and
respectively the width of the blocks (Figure 4.11). Note that with a HMM for faces,
the width of the block images is constrained to equal the width of the face that we
wish to detect Wy to form a one dimensional observation sequence. Therefore, as seen
from Equations 4.10 - 4.11, the number of observations in the horizontal direction
varies with the width of the face to be detected, while the number of observations in
the vertical direction is constant. For each of the blocks extracted from the image, the
observation vectors are obtained using the same technique as that used for training.

Following the extraction of the observation vectors from each test image and
the computation of the state probabilities, the face likelihood is computed within
each rectangular pattern of height Hj; and width Wy via the Viterbi algorithm.
One important advantage of our approach is that it can efficiently compute the face
likelihood for all rectangular patterns having the same top left corner and the same
width. This is a result of the fact that when the Viterbi algorithm is computed
for a pattern of width W, , height Hj, and having the left top corner at (z,y), it
generates the partial likelihood of all the patterns with the same left top corner and

width and of any height less than or equal to Hjy;. Given the constraints of our
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system, H,, < H; < Hy, only the face likelihood for pattern of length larger that
H,, are retained. The accuracy of the detection was improved by including the state
duration modeling [95], [96], [97]. The duration d; of state i is modeled using
a Poisson distribution [97]. Since the duration modeling increases significantly the
detection time, the state duration was introduced in the face likelihood score in the
form of a correction factor that requires a very small increase in the computational
complexity. Hence, following the computation of the Viterbi score, a new likelihood
score is computed as:

~ No
log P(O, q|)\) = log P(O,q|\) +a ) log pi(d;)

i=1
where « is a constant, p;(d) is the Poisson distribution, and d; is the duration of the
i1th state, measured from the state segmentation. The parameter of the state duration
probability p;(d) was measured in the training stage, from the segmented observation
sequences. To deal with patterns of different heights, the partial log likelihood score is
averaged over the length of the observation sequence. The last stage of the detection
system is a decision block that selects the rectangular patterns that are taken to
represent faces. The observation sequences that have a face model likelihood higher
than a threshold are selected as possible face candidates. In order to remove the
false alarms in rectangular patterns close to the actual position of a face, only the
sequences with the maximum face likelihood over a vicinity around the current face
location are selected as faces. Figure 4.13 shows the log likelihood surface for a test
image in the MIT database. Each point of the surface represents the maximum face
likelihood score over all rectangular patterns with the same left top corner. It can be
seen that the largest values of the surface are obtained for rectangular patterns that
are close to the actual location of the face. As expected the scores of the rectangular
patterns that are shifted vertically from the actual face location have large likelihood
scores, due to their face like appearance. However, faces that are shifted horizontally
are rejected due to their low scores. Again this corresponds to our intuition since a

horizontal shift in a face image deteriorates the view of the face image more than a
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shift in the vertical direction. Rectangular patterns in a position close to the actual
face location, which have a large likelihood score, are discarded since their scores fall
below the score of the rectangular pattern that correspond to the actual face location.

The above face detection system has been tested in three experiments. First,
a set of manually segmented images, from the MIT database were used to train one
face model. The detection system was tested on images of the same database, that
contain frontal faces of the same width as those used in training, but show significant
variations in illumination. The detection rate for this experiment is 100%. Note that
the use of the state duration model incresed the performance of the system by 10%,
compared to our results reported in [91].

In the second and third experiment, the face images in the ORL database (res-
olution 92 x 112) were used to train eight face models. The images used to train
each of the face models have been chosen to show similar facial characteristics. In
the second experiment, the detection was performed on the same images from the
MIT database as in the first experiment. In the last experiment, the test set consists
of a larger number of images from the MIT database, that allowed for variations in
face orientation (rotations in the image plane) and lighting conditions. The detection
results (detection rate and false alarms) for the above experiments, when KLT or
2D-DCT -based observation vectors were used, are shown in Table 4.1. The false
alarm rate is reported to the total number of rectangular patterns obtained from all
the test images in each experiment.

Compared with the template-based methods for face detection our approach has

the following advantages:

1. It is more flexible with respect to variations in scale, natural deformations in

the vertical direction, and variations in illumination conditions.

2. It allows for a faster implementation of the face detection algorithm due to the
breaking of the face templates into short image blocks, which are processed to

obtain the observation vectors.
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Experiment 1 | Experiment 2 | Experiment 3

DR FA DR FA DR FA
KLT 100% 84,1808,160 81.3% 84,1898,160 72.6% 252,53694,480
2D-DCT | 100% 84,1808,160 79.2% 84,16132,160 68.3% 252,54654,480

Table 4.1: Comparison of the face detection rate (DR) and false alarms (FA) in

different experiments using the face HMM

However both flexibility and fast implementation of the HMM based face detection
presented in this section refer to the vertical direction, but not to the horizontal
direction. This is determined by the fact that the HMM are one dimensional model
while images are two dimensional.

If the height of the image changes, the size of the observation sequence will only
increase, while a change of the image width will require either a rescaling of the width
of the test image, or the use of a new training set where all faces have the new width.
This effect is in general important in both face detection and recognition applications
since the aspect ratio of faces tend to cluster in a small range and changes in height
of faces determines changes in the widths of faces as well.

Although more efficient than the template-based approaches, the HMM based
face detection cannot make use of the large overlap of the rectangular patterns in the
horizontal direction. The observation vectors from rectangular patterns even with
large overlap in horizontal direction must be recalculated, and no computation can
be saved in the calculation of the observation vectors.

The two problems related to the face HMM and its one dimensional structure
represent the reason for looking to a more complex HMM that is able to model two
dimensional data better. Next chapter will discuss the theory of an embedded HMM

and its applications for face detection and recognition.
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Figure 4.13: An example of face detection results (a) and the associated log likelihood

surface (b)
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Figure 4.14: Face detection results using HMM
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CHAPTER 5

The Embedded Hidden Markov Model

Although successfully used in speech recognition where data is essentially one dimen-
sional over time, a one-dimensional (standard) HMM is only moderately successful
in modeling two-dimensional data, such as images. This fact has been discussed in
the previous chapter and the experimental results for face detection and recognition
confirmed our intuition. A fully connected two-dimensional HMM (Figure 5.1) as
introduced by Levin and Pierraccini [63] can better characterize images. However
it has been shown that the complexity of the training and recognition algorithms
for the two-dimensional HMM [63], make this model inefficient in practical appli-
cations. However, under certain assumptions the complexity of this structure can
be reduced, as shown in [98], where the authors used a two dimensional HMM for
image classification. Another approach for modeling two dimensional data is to use
an embedded HMM as introduced by Kuo and Agazzi [65] for character recognition.
An embedded HMM (Figure 5.2) is a generalization of a HMM where each state
in a one-dimensional HMM is itself an HMM. Thus, an embedded HMM consists of
a set of super states along with a set of embedded states. The super states model
the two-dimensional data along one direction, while the embedded HMMs model the
data along the other direction. Note that a doubly embedded HMM is not a true two-
dimensional HMM since transitions between the states in different super states are
not allowed. In this chapter we will give a formal definition of the embedded HMM
and we will describe the three key algorithms required for the training and recognition

of the embedded HMMs: the decoding algorithm, the evaluation algorithm and the



Figure 5.1: A fully connected two dimensional HMM

estimation algorithm. Finally we will discuss some implementation issues and we will

describe the complexity of the algorithms presented in this chapter.

5.1 Embedded HMM Structure

In Chapter 4 we presented the structure of a one-dimensional HMM that we have
used for face recognition. An embedded HMM shares many of the same features.

Specifically, the elements of an embedded HMM are:
1. A set of Ny super states, So = {Sp;, i =1,2,...Np}.

2. The initial super state probability distribution, ITy = {m;}, where m; is the

probability of being in super state ¢ at time zero.

3. The state transition matrix between the super states, Ay = {ag;;}, where ag;;

is the probability of making a transition from super state 7 to super state j.

4. In an embedded HMM, each super state is itself an HMM, and the structure
of these embedded HMMs is the same as that for a one-dimensional HMM.
However, unlike a one-dimensional HMM, the number of states, the initial state
probabilities, and the state transition matrix will, in general, depend on what
super state the HMM is in. Therefore, some additional bookkeeping is necessary.

What we have for each embedded HMM is the following:
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(a)

(b)

Figure 5.2: An embedded HMM with 3 super states

The number of embedded states in the k™ super state, NF, and the set of
embedded states, St = {Sf;, i =1,2,...,Nf}.
The initial state probability distribution of the embedded states, II¥ =

{rt;}, where 7}, is the probability of being in state i of super state k at

time zero.

The state transition matrix for the embedded states, A¥ = {a’f,ij}, where
a’f,ij specifies the probability of making a transition from state i to state j

within super state k.

The probability distribution matrix for the observations, B¥ = {0¥(Oy, ., )},
where 0%(Oy,,) is the probability of the observation Oy, ,, given that we
are in embedded state j in super state k. Note that for the observation
vector Oy, ¢, we have two subscripts, ¢, and ¢;.

For a discrete embedded HMM it is assumed that Oy, ;, can take a finite
number of observation symbols. Let P be the number of different observa-
tion symbols and let V' be the set of all possible observation symbols (also
called the codebook of the model), V' = vy,...,vp. In this case, B is the

observation symbol probability matrix, i.e. B¥ = {b5(p)}, where,

bf(p) = P(Otoytl = UP|SO,k7 Sf,z‘a )‘) (51)
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With a continuous density embedded HMM, the observations are charac-
terized by a continuous probability density function which, as for a one-

dimensional HMM, are taken to be finite Gaussian mixtures of the form,

Oto,t1 Z G Oto,tlv :u?ma Ufm) (5'2)

for 1 < i < NF, where ¢! is the mixture coefficient for the mth mixture
in state ¢ of super state k, and N(Oy,,,, ¥, U ) is a Gaussian density
with a mean vector pf and covariance matrix U% .

A tied-mixture embedded HMM is one in which all Gaussian components
are stored in a pool and all state output distributions share this pool such

that the output distribution for state ¢ is defined as:

Oto,tl Z Cim Oto,tl ) /Lﬁw Uﬁz) (53)

The above equation differs from Equation 5.2 in that the Gaussian com-
ponent parameters and the number of mixture components are state inde-

pendent.

If we let AF = {ITI}, Ak B*} be the set of parameters that define the k' super state,
then the embedded HMM is defined by the triplet

A\ = (I, Ag, A). (5.4)

where A = {A', A%, ..., A"}, Finally we introduce some notation that will be used
extensively in this chapter. Let Oy, 1 < ¢, < T} denote the sequence Oy, 1, Oy 2, . .., Oy 1y,
and let O denote the sequence Oy,...,Or,. Let ¢+, 1 <t < T} denote the state

of the observation Oy, y,. If ¢, is the super state of Oy, 4, and ¢/ , is the embedded

state of Oy, y,, then gy, = (47, 4, 4, 0,)- Let a4, = a4, 1, - - -, 4}, 7, be a sequence of em-
bedded states and q” = qg, ..., ¢7, be the sequence of super states. Let qy, represent
the sequence g 4,,...,q,n and let @ =qo,...,qrn,-
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5.2 The Decoding Algorithm

Given the observation sequence O, the goal of the decoding algorithm is to recover
the most likely set of states q that maximizes P(O,q|)). In order to describe an
efficient algorithm for recovering the set of states it is useful to define the following
variable:

0, (1) = max  max  P(qi,..., Q- 1,q), =% O1,...,04A) (5.5)

q%o a1l dtg—1

As shown by the above equation, d;,(7) represents the best probability of observations
and state sequence along a single state path that ends at Oy, in super state 7. From
equation 5.5, it is clear that P(O, q|\) = max; d7, (7). The decoding algorithm can be
efficiently implemented by making use of the efficient calculation of variable &;, (%)
from its previous values 04, (7). From equation 5.5, it follows that

dto+1(7) = max[max max P(qi,- .-, Q15 q?o =7,01,...,04|N)agi

Vi q%0+1 q1,--9tg

P(qtlo-i—la Ot0+1|q1?0+1 =1, A)] (56)

The above equation can be written as

Oto+1(1) = maX[mgx max [P(qi, ..., -1, Q,?O =7J,01,..., O |N)ag,i]
J qa;, q1;.-qtg—1
rrllaX[P(q%0+l7 Ot0+1 |q1?0+1 = 7:7 A)] (57)
DQiy+1
It follows that
6t0+1(7:) = rtrlll?]}.([(sto (j)aﬂ,ji] (rlrllaxp(qto-l-lv Ot0+1|q1?0+1 =1, >‘) (58)
to+1

[t is clear now, from the above equation, that in order to compute d;, () it is necessary
to use the Viterbi algorithm [62] for the sequence Oy, and recover the best sequence of
embedded states corresponding to the super state . Then, a Viterbi type of algorithm
is performed for the sequence Oy, ..., Op,. The following steps formally characterize

the decoding algorithm (Figure 5.3)for the embedded HMM:
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Figure 5.3: The decoding algorithm for the embedded HMM



1. Step 1:
Compute P; = maxq: P(Oyy, qy gy, = i, A) using the Viterbi algorithm
0

for each super state and each observation sequence Oy, .
2. Step 2:
(a) Initialization
61(i) = moaPy
(i) = 0
The array ¢, (7) is used to keep track of the argument that maximize d;, (7).

(b) Recursion

51(1) = jén[l?]if(d[éto—l(])aﬂ,ji]f)to
z/)1(1) = argjén[l?]ffio][éto—1(])a0,ji]
(c) Termination
P = o (7
2%, 0o )
0 \* .
= )
(a7,) arg max [0, ()]

P* in the above equation represents maxgyq P(O,q[\) and (¢7,)* is the

super state at Ty of the path g that maximizes P(O, q|)).

(d) Backtracking
The best path q, which maximizes P(O, q|)\) is obtained from the array
Uy, (1) as follows:

(qfo)* = wtoJrl((qgoJrl)*)

In order to reduce the computational complexity of the above algorithm and to avoid
the underflow problems that often occurs in calculations that involve a large num-

ber of probability multiplications, all terms of the above algorithm can be changed
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to their logarithmic form. In this representation all probabilities are replaced by
their log values and the multiplications are transformed into additions. Due to the
monotonicity of the logarithmic function, the maximum will be obtained for the same
arguments, but of course in their logarithmic form.

In addition, the time required by the decoding algorithm can be significantly
reduced when a parallel architecture is used. As shown in Figure 5.3, all the Viterbi
scores obtained in the first step of the algorithm can be computed independently from
each other and therefore all these scores can be computed at the same time using
parallel implementation. Hence the total delay introduced by the decoding algorithm
can be reduced to approximatively twice the delay introduced by the calculation of a

standard Viterbi algorithm.

5.3 The Evaluation Algorithms

In this section we describe two algorithms for the computation of the probability
P(OJ)) of the observation sequence O given our model A. Because of their similarity
with the algorithms for the one dimensional HMM, we will refer to the algorithms

described in this section as the forward and backward algorithms.

5.3.1 The forward algorithm for the embedded HMM

Let us denote the forward variable for the sequence Oy, as:

O‘to,tl(iaj) = P(Ot0,07 SR OtO;tl’ qtlo,tl = j|q?0 =1, )‘) (5'9)

Similar to equation 5.9, the backward variable for the sequence Oy, is given by:

Bto,tl (27]) = P(Oto,tl-l-la SR Oto,Tl |qt10,t1 = j7 (]?0 = 7:? )‘) (510)

The forward and backward variables are computed iteratively using the forward and

backward algorithm for a one-dimensional HMM [62]. The probability of the obser-
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vation sequence Oy, given the one dimensional HMM corresponding to super state ¢,

is computed from both oy, 4, (¢, 7) and By, 4, (7, 5) as follows:
P(Ot0|q1(t)0 = iv )‘) = ZatO,tl (ivj)ﬁto,tl (27]) (5'11)
t1

An efficient algorithm for the computation of P(O|\) is obtained if the forward vari-
able for the sequence Og, Oq,...,Op, is defined as:

ato( ) P(017017“‘7Ot07q?0 - Z|)\) (5.12)

The forward variable oy, (i) describes the probability of the partial sequence
0y,04,...,07, and super state i given the model A. Therefore, P(O|\) can be
computed as:

all ¢

The forward variable oy, (i) is computed iteratively from its previous values and the

probability of Oy, given the super state i, P(Oy,|q), =i, \):

Qo1 (8 Zato 1)a0,;1P (O, |4z, = i, A) (5.14)

From the above discussion, the forward algorithm for the embedded HMM can be
formally described by the following steps:

1. Step 1:
Compute P = P(Oy,,

g, =i, A) for all 5 and and super states

using the one dimensional HMM forward backward algorithms using 5.11.
2. Step 2:
(a) Initialization

O[O(i) = TO,in

70



(b) Recursion
vy 41 (4 Zato i)ao ;| P

(c) Termination

P(Ol, 01, ey OT0|)\) = ZO[TO(i)

5.3.2 The Backward Algorithm

In a manner similar to the forward variable defined in 5.12, a backward variable can

be defined for the sequence Oy,:

Bto( ) (Ot0+17 BRI OT0|q20 = i, )\) (515)

The backward variable (i) defines the probability of the partial observation se-
quence Oy, ...,Op given that O, _; is in super state ;. The variables can be com-

puted iteratively from their future values f;,41(i) and P(Oy, gy, =i, A).

Bto Zao i Ot0+1|q0,t0+1 = ja )‘)BtoJrl(j) (516)

Therefore the backward algorithm for the embedded HMM consists of the following

steps:

1. Step 1:
Compute P, = P(Oyy,|qp, =i, A) for all t; and and super states

using the one dimensional HMM forward-backward algorithms using 5.11.
2. Step 2:

(a) Initialization

BTO (Z) =1
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(b) Recursion
/Bto Z ap ZthO/Bto-i-l( )

It is important to notice that, similarly to the decoding algorithm, the time
required for the computation of the evaluation algorithms can be highly reduced if a

parallel architecture is used.

5.4 The Estimation Algorithm

The estimation of the parameters of the embedded HMM is used to iteratively adjust
the parameters of this model with respect to a certain optimization criterion. The
algorithm presented in this section is similar to the Baum-Welsh algorithm derived for
the one-dimensional HMM. The derivation of the estimation algorithm is described

for both the discrete and continuous mixture embedded HMM.

5.4.1 Discrete embedded HMM

The objective of the re-estimation algorithm is to estimate the new set of parameters
of the embedded HMM that maximize P(O|)). This is equivalent to maximizing the

auxiliary function defined as follows:

QN = 557

ZP (0,q|\) log P(O, q|)] (5.17)

with respect to A. It results from the structure of the embedded HMM that the

probability of the observation sequence O and a state sequence q is given by:

(O q|)‘) - 7r0q Ha() qt q (Ot0|Qt07 ) (518)
where,
PO, ) = 700 T[a", b (0, ) (5.19)
fol%to! l’qgo’1 t1 1’q’fo t1— 1’qt0 31 qto ty fo-ta '
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Therefore, by substituting equation 5.19 in 5.18 and computing the logarithm it

results that:
log P(O,q|\) = logmyge + Zlog Gog9 af + Zlog lto !

> loga, ‘o, . +> Z bth " Oto ) (5.20)
to

P ’qt ot —17qt0 t o
By substituting equations 5.18 and 5.20 in equation 5.17, the auxiliary function
Q(\, \) becomes:

QNN = ZP (O q|)\)log7r0qo —|—ZP (O q|)\ Zlogao

0
,th, 1 7qt0
to

+ ZP (0,q|\) zjlogfqtolt1 +ZP (0, ql\) ZZIOgalqtotl 8.y

to 1

+ Y P(O,q])) ZZlogbth tl(oto o) (5.21)
q

to t1

The auxiliary function can be rewritten in the form:

QN = Qu + Zan n ZQm I S S e (5.22)

i=1j=1 i=1j=1
where,
2 (0, ¢) = i)
Qro(\, o) = ' 10 log mp,; 5.23
2o & P(O, qp bhaqn =g\
Qao(N o) =D > e 1(O|)\)t0 log(do ;) (5.24)
j=1to=1
N1 Tp P 7ql :],qgozzp\) .
Qr (N, 7 fo.0 = log(7 ,) (5.25)
1 1 ] 32:1 t02:1 P(O|)\) 1,5

Mol I P 07 Q?O = i? Qtlo,tl—l = j? Qtlo,tl = l|)\)

Qal )‘ ,]l Z Z Z P(O|)\) log(di,jl) (526)

I=1to=1t1=1

Yo O P 7Qt10t :j7Q?0t :Z|)\,) 74
o 4 log (B (O, s, = 2
)\ bl] tOE:I tlz:l P(O|)\) Og(b] (Othtl ,Uk)) (5 7)
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In order to maximize 5.21, each term of the equation has to be maximized individually

based on the following stochastic constraints:

No

Y 7o =1 (5.28)
=1

No

Y g =1 (5.29)
j=1

Ny )

Yorii=1 (5.30)
=1

Ny

> ai; =1 (5.31)
j=1

P

> bip) =1 (5.32)
p=1

The re-estimated parameters of the embedded HMM are derived using a variant of the
EM algorithm to minimize the auxiliary function in Equation 5.17. All the functions
in equations 5.23- 5.27 are of the form

N

7j=1
and are subject to the constraints in equations 5.28- 5.32 that are of the form
Z;-Vzl y; = 1. Using the same technique as in the standard Baum-Welsh algorithm the
re-estimation equations for the embedded HMM are given by:

P(0,q{=i|))
_ PO
To,;i =

’ ENO P(0,¢0=i|))
=1 p(0|,\)

(5.34)

~To_ POy =iy =i
to=1 P(O]N)
A ARy
to=1 " P(O[)

(5.35)

Qo,ij =
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ETO P(O7qg0,1:j7q?0,1:i‘A)

; to=1 P(ON)

)

T, = . 5.36
L,j To P(O,qtlo’lzzp\) ( )

2to=1 PO

Z E 7qt0t1_1:j7Q,510,t1:l7‘I?0:i|)‘)
. to=1 t1= 1 P(O|X
at, = PO (5.37)
’ Z E (O’th 7qt0 t1—1 J‘A)
to=1 £~t1=1 P(O|))
Z Z 7qt0,t1:j7q?0,t1:ip‘)(s(oto,tl;’uk’)

i to=1 £«t1= 1 (O\/\)
b (k 5.38
J( )= 0505y 1, =31\ ( )

7qt t
Zto lztl 1 . 1(O\)\)

Although the above re-estimation equations are obtained from one observation se-

quence O, in general the re-estimation of the embedded HMM parameters requires

multiple observation sequence, that can be assumed independent. Let O, ..., O", ..., OFf,

be a set of R independent sequences of observations. The re-estimation formulae in
terms of the a-posteriori probabilities, for multiple observations sequences is described
by the following equations:

1 P(g? =07, )

To,; — (5.39)
Zf:l ZZJ'V:O1 P(q) =i|O", \)
oy~ ST Pl = i, =5107) 540
e 1Zt0  P(gf,_, =107, ))
pi = Zrm ) Plai, = dodl, =107 (5.41)
b 1 Eto 1 P(Q?O =i|0", A)
ai'l — 1 Zto 1 Etl =1 (Qtlo,tlfl = j7 Qtlo,tl = l’ q?o = Z‘|OT, )\) (542)
> 1 Zto 1 Etl =1 P(Q?O =1, Qtlo,tl—l = 7|07, A)
) P 1 — ', 0 — 'Or,)\ o’ U
b;(k) — 1 Eto 1 Ztl 1 (Qto,tl J qt07t1 Z| ) ( to,t1 ) (543)

1 Eto 1 Ztl =1 P(qgo,tl - i? qtlo,tl - ]|O ) )\)
The complexity of the equations will be greatly reduced by the use of the following

notations:
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(i, 5) = P(gh_y = i,q) = j|O}, ..., 0, \) (5.45)

v o (i, ) = Play,,, = 5105, a4y =i, \) (5.46)

v i, 5,0 = Pat, -1 = o diyy, = 1O}, a5y =4, M) (5.47)
Y (i.5) = P(q)y = iy q}, ,, = §|O", \) (5.48)

Voo (i3, 1) = Plafy =i, q 1 = §. @ty = 1107, N) (5.49)

Next we will provide an efficient way of computing the above equations using the
forward and backward variables. We will denote by «aj, (i), oy, 4, (4, 7), By, (4), B, 4, (i, J)
the forward and backward variables, as defined in equations 5.9- 5.15, and com-
puted for the observation sequence O". The above a-posteriori probabilities can be

calculated from the forward backward variables as follows

1)y ag (4) B, (4)
fyto (Z) - Ez 040 (Z)BZO (Z) (550)
720(7")(7:,]-) — agoq(i)ao,ijp(owqgo = ja A)B{O (]) (551)

> 0y (0) B, (4)
Equations 5.50 and 5.51 are similar to the equations derived for the corresponding
a-posteriori probabilities of the one dimensional HMMs. However, since the above
equations refer to the structure of super states, the probability of observations given
the state is replaced by the probability of Oy given the super state and the embedded
HMM P(Oj |qp, = j, A). P(O} |gos, = J,A) is computed according to equation 5.11.
Since equations 5.52 and 5.53 calculate a-posteriori probabilities defined inside
each of the embedded HMM, the calculation of the v, , (i, j) and ~; , V(i, j,1) is
straightforward:

ago,tl (27 ])/Bgo,tl (27 ])
Zi a;‘o,tl (7’7 j)/B{(),tl (27 ])

Voo un " (0 7) = (5.52)
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a:o,tl (Z7 j)a’i,jlb%(ogo,tl )/Btro,tl (Z7 l)
Ei ago,tl (Z7 j)ﬁtro,tl (Z7 ])
(r)

Because it is more difficult to express the a-posteriori probabilities v, (7, j) and

yﬁg}tl (4,7,1) in terms of the forward and backward variable we will discuss this part in

%Z),tl (r)(iaja l) = (553)

more detail. We will start by decomposing P(O, ¢y, ,, =14, q;,, = j|A) as:
P(O7 q?o,tl = i’ qtlo,tl = ]|)\) = P(OU7 et OtO*l? q?o,tl = Z|)\)P(Ot07 qtlo,tl |q?0 = i’ )\)
P(Ouit,- ., On g = i, A) (5.54)

The first term of the right hand side, which represents the probability of the obser-

vations ending with Oy, and super state ¢ can be expressed as:
P(Oy,...,04-1,q,, =i|A) =Y P(O,..., O _1lg) 1 = J)ao,; (5.55)
J
Given the embedded structure described here, the following two equalities hold:

P(Oq,...,04 1,q, =1i|\;) =

(O_P(Oq,...,O0u-1lgp_1 = 7)a0:;)P(Oulqs, =i, \) (5.56)
J

P(Ol, ey OT0|>\i) =
P(Ol, Ceey Oto—la qgo = i|>\i)P(Ot0+1, ceey OT0|q?0 = 7:, )\Z) (557)

In addition, the a-posteriori probability P(q{%, = j, Oy,lql = i, A) is calculated from
the following equation:

P(Ot07 qtlo,tl = ]|q?0 = 7:7 >\)
P(Otoa |q?0 = 7:7 >‘)

P(qtlo,tl = ja Ot0|q?0 = 7:7 >‘) = (558)

Substituting equations 5.55, 5.56, 5.57 and, 5.58 in equation 5.54, after some

simple math work it results:
P(O7 q?o = 7:7 qtlo,tl = ]|)\) = P(O7 q?o = Z|>\)P(qi?t1 = j|0t07 q?o = i’ )\)
After dividing both sides of the equation by P(O|\)

P(qg) = i’ qtlo,tl = ]|O7 )\) = P(qg) = Z|O7 )\)P(qtlo,tl = j|ot07 q?() = i’ )\) (559)
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In a similar way it can be shown that

P(gy = i, Q1 0,—1 = J Gty = 1|0, N) =
P(q?() = Z|07 )\)P(qtlo,tl—l = j7 qtlo,tl = l|0t07 q)?o = 7:7 >\) (560)

Using the notations in 5.48 and 5.49, the equations 5.59 and 5.60 become:
Vit (857) = 40" ()74, (5) (5.61)
(r)

’7t(1)n,t1 (27 ja l) = ’720 (r) (i)%z),tl (r) (27 ja l) (562)

The re-estimated parameters are given by the following equations:

/() (s
rog = 2o () (5.63)
> i ()
Er Zto f)/g (7') (Z’ ])
. S0 5.64
A I SHEACI ) o
i _ 2o T Va0 ) (5.65)

T = -
b7 Zr Zto /%20 (T) (Z)

(r) ..
7 Zr7 , (27]70
ay ;= fo,t1 CR (5.66)
Er Eto Etl f)/to,tl (27 ])

. ZT Z(to,tl)GotO,tlivp /%g(:‘,)tl (Z7 ])

’ Zr Zto Ztl %50,)?51 (Z7 ])

(5.67)

5.4.2 Continuous embedded HMM

In this section we will present the algorithm for the re-estimation of the parameters
for the continuous embedded HMM. The algorithm follows the same general steps as
the algorithm for discrete embedded HMM described in the previous section. How-

ever before we prove the re-estimation equations, some notations and discussions are
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needed. Equation 5.2, which defines the probability matrix B of the continuous

mixture embedded HMM, can be written as:

Oto,tl chm jm Oto,tl) (5'68)

where b5, (Oy,,) is the Gaussian density function of the mth mixture in state j of
super states i. Let k;,;, represent a mixture component of the embedded state, and let
ki, = (Kiy0, Ktg,1s- - -5 ktory) and k = (ko, ky, ..., kg,). The elements of ky, represent
a sequence of mixtures corresponding to the embedded states q%o, while the elements
of k are all mixture sequences ky,. It is clear now that with the continuous mixture
embedded HMM, the sequence of states is more refined than in the discrete case and
includes both the state sequence and the array of mixtures k corresponding to theses
states. Therefore in a similar way to equation 5.17, the auxiliary function ¢ for the

continuous mixture embedded HMM is defined as

1
P(O})

QNN = 35" P(0,q,k|\) log P(O, q,k|\)] (5.69)

Let’s recall that the goal of there-estimation equation is to maximize the auxiliary
function @) with respect to A. The probability of observation O, a single state path

q, and a sequence of mixtures k corresponding to q is given by

P(07 q, k|)‘) = 7r0,q8 H ) 0 P(Otoa iy, kt0|)‘) (570)
to

7qt0 17qt

where P(O, qq,, ki, |\) can be decomposed as:

0 0 0 0
a1 qy Qi ,t Qi .t
P(O k, |\)=m,9 a,’® b ot O c > 5.71
( tos Ato>s t0| ) 17qt10,1 : 1,(],}0,“71%}0,& qgo,tl’ktO’tl( to,tl) qgo,tl,kto,tl ( )
1

By substituting equation 5.71 in 5.70 and and computing the logarithm it results:
log P(O,q,k|\) = logm, @t Zlogao,qt Lt Zlogﬂ foy ot
5y ¢
Z Zloga 7qt b1 — 17‘1t0 ty + Zzlogb 0 1 OtO:tl)
to t1 to t1
a, )t
>3 log thz ti’kto N (5.72)

to 11
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Using equations 5.70, 5.71 and 5.72 in 5.69, the auxiliary function Q(A, \’) can be

decomposed in the form of the following sum:

1
QA N) = BIOM) >3 P(0,q,k|)) logwoqo +>°) P(0,q,k|)) Zlogaoqt s

a k a k

+ ngjp(o ,a, k|A) Zlog~qt°t1
q

gty

+ ZZ (0, q,k|\) ZZlog&th
q

1
Lay o100 ot
o 4 0-t1 0:t1

+ ZZ (0,q,k|\) ;Zlogbgzo "o (Oto11)
q 0

t1

+ Z;P(O,q,kp\ tZZlog~qf° b, (5.73)
q 0

ttl
t1

and it can be rewritten in a more compact way:

No N No M 0

Q(\, QW0+ZQ%+ZQM+ZZQM+ZZZQb+Zch (5.74)

=1 j=1 i=1j=1 k i=1j=1

where,

Yo P(0O,k, q) =)

Qn(\Pins) = 3 =551

log 7o (5.75)

2 (= POk gf =iyqh =41
Qao (N, Goij) =D > tzj(()|A;° 1= )log(aoxj) (5.76)

71=1tp=1

. Ny TOPO,k,O :.71 — il
HOEDIDY ( G0 = b ip0 = I 1)

s fows P(OA)

lOg(ﬁg,io, to) (577)

Wb &L P O k7q?0 = Z.7(]1510,t1—1 = j? qtlo,tl = l|>\)

QalAa‘ljl ZZZ

I=1to=1t1=1 P(O|)‘)

log (@t ;) (5.78)

Yo & P O k7q?0,t1 = i7q1510,t1 = jkt07t1 = m|)\)

QN V) =D Y

to=1t1=1 P(O|)\)

log(b',,,(Oyo.r,)) (5.79)

Moo b P o k7 Q?O = iaQth,tl = j; kto,tl = m|)\)

AGim) = 2 2.

to=1 (121 P(OA)

log(¢,)  (5.80)
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Due to the decomposition of the auxiliary function, a global maximum of () is ob-
tained by the maximization of the individual auxiliary functions. The maximization
of the individual auxiliary functions Q,, Qqu,, @x, and an subject to the stochastic
constraints in equations 5.28- 5.31 is obtained in a similar manner as discussed in
the previous section. The re-estimated parameters obtained from multiple indepen-
dent observation sequences and expressed in terms of the a-posteriori probabilities

are given by the following equations:

. Zf1zk (Q?:ik|0r )_ R P(Q1—Z|OT )

Toi = = (5.81)
12 Yk P(q?, k|07, ) r:l EZN:OlP(QI|0r7 A)
agpi; = i Eg‘;o:lTEk P(q?O*l - i,q,?o =7, k|07, \) —
, R =1 Ztoozl Ek P(qr?o—l = 7:? k|0r7 )‘)
lzto IP(qg)—l = i7q?0 :]|OT,)\) (5 82)
1 Eto 1 P(Q?O,1 = Z‘|Or, )‘)
. 5:1 EZ;O:I >k P(qtlo,l =7 qw?o,l =1, ky |Or, )‘) _
b ER 1 Ez;():l Zk tOP(q?(),l = 2.7 kt0|or7 )\)
ZR 1 Eto 1 P(Qtlo,l = j7 Q?O,l = i|or7 )\) (5 83)
RS Plg), =07, )
- 1 Zto 1 ZtTll 12k top(qtlo,th =7, qtlo,tl = l,Q?O = i,kt0|0r, )‘) _
it 1 Zto 1 Etl =1 Zk top(qgo =1, Qtlo,tl—l =J kt0|OT, )‘)
1 Zto 1 Ztl 1 P(qto,tlfl = j’ qtlo,tl = l’ q?o = Z’|Or7 )\) (5 84:)

1 Zto 1 Ztl 1 P(qgo = 2.7 qtlo,tl—l - j|OT‘, )\)
Furthermore it can be seen from equations 5.81- 5.84 that the re-estimation equations

for m, ags, 7} ; and af ; have the same form as in the discrete case and therefore
they will be computed accordingly to equations 5.63- 5.66. The only difference
from the computation of the parameters corresponding to a discrete HMM is that in
all computation the discrete probability function 5.1 is replaced by the continuous
mixture density 5.2. From the form of the individual auxiliary function ). and the
constraint:

M .
S =1 (5.85)

m=1
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it results, that the estimated value of the m' mixture weight in the embedded states

j of super states 7 is given by:

Ci- _ 1 Eto 1 Etl =1 (qtlo,tl = j7 qgo,tl = i? kt():tl = m|07“, )\) (586)

Jm 1 Eto 1 Ztl 1 P(qgo,tl = i7 Qtlo,tl - j|OT‘, )\)

The maximization of (), with respect to b;m is obtained through differentiation, and
by using the partial derivatives of b’ with respect to %, and (U%,)"" . The details
of this derivation are not given here since this maximization procedure is very similar
to the one used for one dimensional HMM [99]. It can be shown that the values i,
and Ui. that maximize Qbﬁ-m’ and consequently represent the re-estimation equation
are given by:

of yi%,, and U’

jms

,ui‘ — 1 Eto 1 Ztl =1 P(qtlo,tl = j’ q?o,tl = i’ ktO:tl = m|07', )\)Ozo,tl
am 1 Eto 1 Ztl =1 P(qgo,tl - i? Qtlo,tl - j? kt()ytl = m|07‘, )\)

(5.87)

Ui~ —
jm
Zr Zto Ztl P(qtlo,tl = j’ q?o,tl = i’ kthtl = m|0r’ A)(Ogmtl B /'Lg)(O;Oatl B ’u;m)T
Er Zto Ztl P(qgo,tl = 7:7 qtlo,tl = j7 kto,tl = m|07" >\)

(5.88)

To give a more compact representation of equation 5.86 and 5.88 it is useful to make

the following notations:

Cto t1 (Z ]7 ) P(qtlo,tl ]7 ktO t1 — m|ot07 qto = i’ )\) (589)

GO Gy 4ym) = PlGigsy = iah = Js kig = m|O, ) (5.90)

Cto 4 (], m) is the a-posteriori probability of state j and mixture m given the obser-
vation sequence Oy, the super state : and model A. It is important to notice that
Cto " (4,7, m) is practically independent of model . The only reason that it appears
in equation 5.89 is to allow for the definition of A’ as one of its super states. Unlike
Cto " (i, 5,m), Ct(g,)tl (i, 7,m) depends on the context of the structure of super states.

It denotes the probability of super state i, embedded state ;7 and mixture m, given
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the entire sequence O and model A. Since Cto t (z J,m) is practically independent
of model A, it can be computed as in a one-dimensional HMM. Hence,

a:o,tl (7/ j)/Btro,tl (7/ ]) i N(Ot07t17/’b_§m7U§m)
E ato,tl (7’ ])/Bto t1 (7’ .]) Zm ]m (Oto,tlnu’;'m7U;m)

G iy Gym) = (5.91)

In a similar way to equation 5.59, Ct(g,)tl (4,7, m), can be related to Cto (g, m):

Ct(g,)tl (Za ja ) f)/to ( )Cto t1 (Z ]7 ) (592)

In the above equation, %0(’")(2') is related to the structure of super states of our
model while (;f (’")(j, m) depends only on the HMM inside each super state. From
this point of view, equation 5.92 gives another relation in terms of the a-posteriori
probability that confirms our intuition of the separability of the embedded HMM
structure. Substituting equation 5.89 and 5.90 in 5.86- 5.88 the re-estimation

equations for ¢t

i :
o u]m and X%, become:

C;"m E Eto Ztl Cto,t1 (7’ .]7 ) (593)

Dor Doty 2ty ’Yto,tl( 7)

i _ S T i Gty (1,4,m)0 4,
T S S Gl (i 4,m)

(5.94)

_ Er Eto Ztl Ct(g,)tl (7’7 j? m)(ogo,tl - /'Liaj)(ozo,tl - /'Liaj)T
0 Tty Loy Gl (05 5,m)

The interpretation of the re-estimation equations is straightforward. The estimated

i

(5.95)

value ¢, can be seen as the ratio between the expected number of occurrences of
super state 7, embedded state j using mth mixture component and the expected
number of times the system is in super state ¢ and embedded state j. A similar
interpretation can be given for all re-estimation equations for the discrete 5.63- 5.67
and continuous embedded HMM 5.93- 5.95. From the definitions in 5.90 and 5.45,

it can be seen that in the case of simple mixture, the term Ct(g,)tl (i, 7, m) reduces to
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Vio s (" (4, 7) Therefore the re-estimation equations for the parameters of the uni modal

Gaussian density p% and U} become:

i Zr Zto Etl /yg,)tl (27 j)O:O,tl

L N (5.96)
! Zr Zto Etl %50,)?51 (27 ])

Ul — > Zto Ztl f)/t(g:)tl (7:? j)(ogo,tl — lu’i:j)(ogo,tl — 'u’iJ)T (5 97)
: 0 Stp Sty Vi (i)

5.5 Implementation Issues

In this section we will discuss some of the implementation issues of the algorithms
described in the previous sections for the embedded HMM structure. As expected,
because of the similarity of the algorithms of the embedded structure and one dimen-
sional HMMs, some of the implementation issues are common to both models. Hence
we will discuss in more detail here the issues that are specific to the embedded HMM
and shortly refer to the problems addressed by the one-dimensional HMM such as
scaling, log representation and thresholding. While the computation of the forward
backward variables o and S for the HMM corresponding to each super state follows
the scaling procedures described in [62], the calculation of 5.14, requires a closer look.
The probability of Oy, given the super state j and model A, P(Oy|qgy, A) in equation
5.14 is in general very small and often leads to underflow problems. This value is
retrieved from the scaled forward algorithm [62] applied to the HMM corresponding
to super state j in the logarithmic form:
T

log P(Oy,lqs), A) = tlg_:o log sty 1, (5.98)
where s, 4, are the scaling coefficients corresponding to the observation Oy 4 . Thus
although log P(Oy,|q;,, A) can be computed, P(Oy,|qy,, A) is out of the dynamic range
of the machine. This underflow will propagate to the computation of the a-posteriori

probabilities as denoted by equation 5.44- 5.49, 5.89 and 5.90 and will further make
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the implementation of all the algorithms described in this chapter impossible. Next

we will describe a simple way to avoid this problem. Let F' be a constant such that:
maxlog P(Oylg;,, A) + log F = 0. (5.99)

The addition of the value log F' to all P(Oy|g;), A) leads to:
log P(Oy,|qp, \) = log P(Oy,qp, \) + log F. (5.100)

which in fact represents the multiplication of each P(Oy|gy,,A) by a constant such

that
I?axp(Ot0|q,?0, A = 1. (5.101)
0]

Values of log P(Oy, |gp) , A) that fall under a minimum value V,,,;;, are set to log P(O,, g0, A) =
Vinin- Vimin 18 chosen such that P(Ot0|q?0, A) for all ¢y and j remains in the dynamic
range of the machine. By replacing P(Oy, g0, A) by the scaled values P(Oy, gl , \),

the values of the a-posteriori probabilities in 5.44 - 5.48 will be multiplied by the
same factor F'. Therefore by substituting the new a-posteriori probabilities in the
re-estimation equations 5.63- 5.67 or 5.93- 5.95 the factor F' in the numerator and
denominator will cancel and the values of the re-estimated parameters will remain
unchanged. Finally it is important to notice that the scaled overall log probability

log P(O|)), obtained by using the scaled probability 15(0|q?0, A), becomes:

log P(O|)\) = log P(O|\) + log F (5.102)

Another way of avoiding the problems related to the limitations of the dynamic range
of the machine is the use of the logarithmic form for all probabilities used in the
algorithms described in this chapter [99]. However, the complexity of this method is
higher than the method proposed in this section.

5.6 Computational Complexity

In this section we will discuss the computational complexity of the decoding and

evaluation algorithms for our embedded HMM structure described in this chapter .
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Because the computation of the above algorithms, as it have been shown earlier in
this chapter, uses the basic algorithms used for the one dimensional HMM, it is useful
to consider first the complexity of these algorithms. The number of additions required
by the logarithmic implementation of the Viterbi decoder [62] is N?T, where N is
the number of states and 7T is the number of observations. Similarly the number of
calculations (additions and multiplications) for the forward and backward algorithm
is of the order of N2T', O(N?T). As described earlier in this chapter, the decoding
and the evaluation algorithm consist in two stages. First the classical algorithms the
decoding (Viterbi) and evaluation (forward backward) algorithms for one dimensional
HMM are computed for all Oy, and super states j to obtain P(Oy,|qy, = j,A) and
respectively max,; P(Oyy, 4} g5, = j,A). Therefore the total number of calculations
required by the first stage of the evaluation and decoding algorithms for the embedded
HMM is of the order O(¥h°, (Nl(k))QTITO). In the second stage, the same algorithms
derived for the one dimensional HMM are applied, but this time for the overall HMM
defined by the structure of super states. Hence the number of calculations required in
this stage is on the order of O(NZTp). Adding the computation complexity for both
stages of the algorithms it results that the overall complexity, NumClalc, for each of

these algorithms is:
No

NumCale = (3 (N®Y'T)Ty + No2T, (5.103)

k=1
For the doubly embedded Viterbi algorithm all, if the logarithmic representation is

used, all calculations are reduced to additions. In the case of the forward-backward
algorithms the above NumC'alc refers to the number of additions and multiplications
since the logarithmic implementation is not possible in this case. Equation 5.103
shows that although the complexity of the basic algorithms for the embedded HMM is
higher than for the one dimensional HMM, it is lower than the for the fully connected
two dimensional HMM. This fact allows for considering this model for modeling two
dimensional data such as images. A more detailed description of the use of this model

for face analysis, recognition and detection will be given in the next chapter.
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CHAPTER 6

An Embedded Hidden Markov Model for

Face Detection and Recognition

Although one-dimensional HMMs have been used with moderate success for face
recognition and detection, a one-dimensional HMM is not well-matched to the two-
dimensional structure of images. Therefore, in this chapter we consider using an
embedded HMM, as described in the previous chapter, for face modeling, detection
and recognition. The notation regarding the parameters of the embedded HMM used

in this chapter are consistent with the notation used in Chapter 5.

6.1 The Embedded HMM for Face

An example of an embedded HMM for faces is shown in Figure 6.1 where each of
the five states in the one-dimensional HMM in Figure 4.1 becomes a “superstate”
that contains an embedded HMM. The embedded HMM for face follows the same
structure illustrated in Figure 5.1, where all transitions backwards are removed. The
superstates model the image along the vertical direction, while the embedded HMMs
model the data along the horizontal direction.

Before we can use an embedded HMM for face recognition [100] and detection
[101] it is necessary to select the number of superstates in the top-to-bottom HMM,
the number of states in each embedded HMM, the state transition probabilities, and
the observations that are produced by the HMM. The structure that we have used



forehead

Q
Q

Figure 6.1: An embedded HMM for face detection and recognition

is shown in Figure 6.1. Specifically, we have N, = 5 superstates that are used to
represent the five primary facial regions as an image is scanned from top to bottom,
i.e., forehead, eyes, nose, mouth, and chin. The first and last superstates have three
embedded states, whereas the middle three superstates have five. The number of
embedded states was selected based on the number of regions we expect to find in
a face as it is scanned from left to right within a given superstate. For example, in
the second superstate (eyes) we have one state for each eye, one state for each of
the temple regions (the regions between the eyes and the edges of the face) and two
states for the region between eyes. We also considered using six superstates, using
the sixth state for hair above the forehead, but this extra state did not significantly
improve the recognition results, and increased the computational complexity of the
model. In our experiments, each state was modeled by a mixture of three Gaussian

densities and the covariance matrix was chosen to be diagonal.
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6.2 The Observation Vectors

The observation sequence for a face image is formed from image blocks of size L, x L,
that are extracted by scanning the image from left-to-right and top-to-bottom as
illustrated in Figure 6.2. Adjacent image blocks overlap by P, rows in the vertical

direction, and P, columns in the horizontal direction. Specifically in our experiments

Figure 6.2: Face image parameterization and blocks extraction

the following values were used for parameters L, L,, Py, Py: L, = 8,L, = 10, P, =6
and P, = 8. The observation vectors are formed from either six two-dimensional DCT
coefficients (a 3 x 2 low-frequency array) or four KLT coefficients corresponding to the
largest eigenvalues. The technique used to extract the KLT coefficients is analogous to
that described in Chapter 4. In the hidden Markov models developed by Samaria [71],
the observation vectors are formed from the pixel values within each block, so the
dimension of the observation vectors were L, x L, = 80. Therefore, retaining only
six low-frequency DCT coefficients or four KLT coefficients reduces the dimension
of the observation vectors by a factor of about thirteen to twenty. As discussed in
Chapter 4, in addition to reducing the dimensionality of the observation vectors,
using DCT coefficients also tends to reduce the sensitivity of the HMM to noise,
image rotations or shifts, and changes in image illumination. Changes in illumination,
which is a challenging problem in any face recognition system, can be considered to

be negligible over small blocks relative to the image size such as those used in our
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approach (of 8 x 10 pixels). Therefore variations in illumination will affect primarily
only the DC component of the 2D-DCT and leave the rest of coefficients unchanged.
If pixel intensities are used as observation vectors, the variations in illumination
affect all elements of these vectors, and consequently, decrease the robustness of the
system. Finally, using DCT coefficients for the observations allows one to perform face

detection and face recognition on images that are in compressed form, e.g., JPEG.

6.3 Training the Embedded HMM

The training of the embedded HMM for face detection and recognition uses the max-
imum likelihood criterion. The training follows the same steps as those used for
the training of the standard HMM explained in Chapter 4, except that the Viterbi
segmentation, the forward-backward procedure, and the Baum-Welch re-estimation
algorithm are replaced by the corresponding decoding (doubly embedded Viterbi),
evaluation and estimation algorithms described in Chapter 5. The same training
procedure, which will be explained later in this section, is used for both face detec-
tion and recognition. The only difference between training for face recognition and
training for face detection is in the images that are used in the training set. For face
detection, the training images represent faces of different people taken under different
illumination conditions and small deviations from a frontal view. The images also
consist of different facial expressions, hair styles and represent both males and females
from different ages and races. All of the face images in the training set are used to
train a single face model. For face recognition, on the other hand, each individual
in the database is represented by an HMM face model. A set of images representing
different instances of the same person, showing different expressions, hair styles, or
eye wear, are used to train each HMM.

To train an embedded HMM we proceed as follows. First, the observation vectors

are extracted for each individual in the training set. Let us assume that we have T}
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Figure 6.3: Training scheme for the embedded HMM




Figure 6.4: Initial face segmentation for the embedded HMM

observations from left to right, and 7j observations from top to bottom. In other
words, we have an array of Ty77 observations. The values for T and 7T} are determined,
of course, on the image size, the size of the image blocks (L, and L, ), and the amount
of overlap (P, and P,). These observations are then used for training as follows (See

Figure 6.3):

1. At the first iteration, the observation vectors are uniformly segmented into N
vertical super states, and the vectors within each super state k are uniformly

segmented from left-to-right into N} states (Figure 6.4).

2. At the next iteration, the uniform segmentation is replaced by a doubly embed-

ded Viterbi segmentation, which is illustrated in Figure 5.3.

The model parameters are then estimated using an extension of the segmental
k-means algorithm [61] to two dimensions. Specifically, the estimated transition
probabilities between super states ag;; and the estimated transition probabilities
between the embedded states a} ;; are obtained as follows,

g number of transitions from Sf ; to S,
A g = 2 :
1,51

total number of transitions from Si ;

number of transitions from Sp; to Sy

Qo,ij =

total number of transitions from Sy ;
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In addition, the estimated mean ﬂ;m, the covariance fJ’;m of the Gaussian mix-
ture, and the mixture coefficients 5§-m for mixture m of state j in super state ¢
are obtained as follows:

- 1Et0 1 t1 11/) (t07t1) (to, 1)
m 1Et0 1 t1 177/) o (tos t1)

o - LD LD oA l/);’r (to, t1)(O(to, t1) — fily,) (O (to, t1) — iiy,)"

m LY sl (t, 1)

~i 1Et0 1 t1 11? m(to, 1)

c. =
o 1 Zto 1 Eh =1 m:l ¢]T:l (tOv tl)

where 1/);’,2(150, t1) is equal to one if O(tg, ;) is associated with mixture compo-

nent m in state j of super state i, and it is zero otherwise.

. The iteration stops, and the embedded HMM is initialized, when the doubly
embedded Viterbi score at consecutive iterations is smaller than a specified

threshold.

. The parameters of the embedded HMM are further re-estimated using the for-
ward backward procedure, and a re-estimation procedure to maximize the prob-
ability of the observations given the face model. The forward and backward
procedure together with the re-estimation equations for the embedded HMM

were derived and explained in detail in Chapter 5.

. The iteration stops, and the parameters of the embedded HMM is trained, when
the probability of the observations given the model at consecutive iterations is

smaller than a specified threshold.
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6.4 Face Recognition Using the Embedded HMM

Once an embedded HMM has been trained on a set of face images, it may be used
for face recognition. The procedure is as follows. First, the observation vectors are
extracted from the unknown face. Then, the probability of the observation sequence
given the embedded HMM face model of each person is computed using the doubly
embedded Viterbi algorithm. Finally, the model with the highest likelihood is se-
lected, and the selected model reveals the identity of the unknown face (Figure 6.5).

We have tested the embedded HMM face recognition system on the Olivetti Research

iy

Test

| __»| Embedded |
mage Viterbi
Block
Extraction
|_» Embedded
Viterbi Model
Feature —  Maximum Recognized
" ——
| Extraction | [ Selection
Embedded
T viterbi [

Figure 6.5: Face recognition scheme using the embedded HMM

Ltd. (ORL) database. For both DCT and KLT-based observation vectors we have
achieved a recognition rate of 98%, when five images were used for training and each
state was modeled by a Gaussian density function. If the number of images used for
training is increased to seven or more, or the number of Gaussian mixtures used to
model each state is increased to three or more, our system achieves perfect (100%)
recognition for both KLT and DCT-based observation vectors.

Table 6.1 compares some of the HMM based face recognition approaches, that
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Recognition Complexity
Rate (additions)
HMM [74] 85% N§Ty
HMM [71] 90-95% (=M N2y
Embedded HMM 98% (s (NOY'TO) T + No2Th

Table 6.1: Comparison of the face recognition rate and numerical complexity for

different HMM-based approaches

have been tested on the ORL database, in terms of recognition rate and computational
complexity. In all experiments, five images were used for the training set and each
state was modeled by a Gaussian density function. From Table 6.1, it is clear that
the standard HMM provides the most efficient implementation but has the smallest
recognition rate. Although the complexity of the embedded HMM is larger than
for the standard HMM, its recognition rate is significantly higher. The embedded
HMM has a recognition rate that is from 3% to 8% better than the HMM with
end of line states (Figure 2.1 -a) along with a significant decrease in the amount of
computation compared to the same model. In addition, unlike the HMM with end of
line states, the embedded HMM allows for a parallel implementation of the decoding
algorithm, i.e. the doubly embedded Viterbi algorithm. This can dramatically reduce
the recognition time. Furthermore, the use of the 2D-DCT or KLT coefficients rather
than the pixel intensities decreases significantly the size of the observation vectors and,
consequently, decreases the recognition complexity compared to the face recognition
system proposed by Samaria [71].

Since face recognition systems are often tested on different databases, it is diffi-
cult to compare the performance of one system to another. However, in Table 6.4 we
present some of the more successful face recognition systems that have been tested

on the ORL database. It should be noted that methods 1-3 were tested using one
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Approach Recognition

Rate

1 Auto Association and 20%

Classification NN [42]

2 | Dynamic Link Matching [51] 80%

3 Eigenface [19] 80%

4 HMM  [74] 85%

5 VFR model [60] 92.5%

6 HMM [71] 90-95%

7 PDBNN  [45] 96%

8 Convolutional NN [43] 96.2%

9 Embedded HMM 98-100%

Table 6.2: Comparison of the face recognition rate for different approaches tested on

the ORL database
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Figure 6.6: Face recognition results using the embedded HMM
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image per person for training (these systems were designed to recognize a face given
only one training example) [73]. In methods 4-9, on the other hand, both the testing
and training sets contained five images of each person, and there was no duplication
of images between the testing and training sets. It should also be pointed out that
the recognition rate for the “eigenfaces” method depends on the number of eigenfaces
that are used, and that the rate varies from about 73% when less than 5 eigenfaces
are used to about 90% when there are 175-200 eigenfaces [71]. The results shown in
the table were obtained using 39 eigenfaces [73]. In [60], the authors reported that
the performance of the VFR model increases with the number of images used in the
training set, with perfect recognition (100%) when eight images per person were used.
Figure 6.6 shows some recognition results when five images were used to train each
of the face embedded HMMs. The crossed images represent incorrect classifications,

while the rest of images are examples of correct classification.

6.5 Face Detection Using the Embedded HMM

The embedded HMM structure allows for an efficient implementation of a face detec-
tion system using the doubly embedded Viterbi algorithm. A face detection system
should be able to locate all faces in an image of both males and females independent
of their appearance, race, age, scale, orientation, background or illumination. As it
will be shown later in this section, an embedded HMM allows for more flexibility
with scale deformations in both horizontal and vertical direction, than the standard
HMM or the template based approaches. Let’s recall here that while the HMM based
approach discussed in Chapter 4 allows only for variations in the height of the faces,
the template based approaches are rather inflexible to any scaling variations. This
represents one important problem of these approaches since variations in the size of
faces should be expected in most of face detection applications. The overall face

detection system is illustrated in Figure 6.7. Since in our approach no assumptions
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Figure 6.7: Face detection using the embedded HMM

are made with regard to the background, the face likelihood is computed for all rect-
angular patterns in the face image. The face likelihood for each rectangular pattern
is given by the doubly embedded Viterbi likelihood, computed for the observation
vectors within the rectangular pattern, weighed by a state duration correction factor.
The rectangular patterns for which the face likelihood increases a fixed threshold are
taken as valid faces. Before we describe the steps of the face detection algorithm
in more detail, it is important to notice that by taking advantage of the large hori-
zontal and vertical overlap of the rectangular patterns, the computation of the state
probabilities of the observation vectors within the rectangular patterns can be highly
decreased. This is due to the fact that the overlapping patterns have in common a
large number of observation vectors. Based on the above observation, the first step in
our face detection approach is to extract the image blocks from a test image, followed
by the computation of the observation vectors and the corresponding state probabil-
ities. The image blocks are extracted by sliding a rectangular window from left to
right and from top to bottom across the test image (Figure 6.8). The blocks have
the same height L,,, width L,, horizontal and vertical overlap P,, P, as those used for
training. Given an image of size W x H, the pairs (W,,, H,,) and (W), Hys) represent
the width and height of the smallest and largest face, respectively, that we wish to
find in an image (Figure 6.9). To detect a face of width Wy, and height H;, where
Wy < Wy < Wiy and Hp, < Hy < Hyy, the number of blocks that are extracted in
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Figure 6.9: Image parameterization for face detection using embedded HMM.
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the horizontal direction, 77, and the vertical direction, T}, is

W-1L,

T,=—% 41 6.1

I —p " (6.1)
H—-L

T,=—""2+1 6.2

Note that, unlike the standard HMM based face detection system, the number of hor-
izontal and vertical blocks given by Equation 6.1- 6.2, is independent of the face size
to be detected. The observation vectors are obtained from either 2D-DC'T coefficients
or KLT coefficients extracted from the image blocks using the same technique used
for training.

Next stage of the face detection algorithm is to compute the face likelihood of
each rectangular pattern using the doubly embedded Viterbi algorithm. Before the
face likelihood of each rectangular pattern is computed, it is important to notice that
by taking advantage of the large vertical overlap of the rectangular patterns, the
complexity of the face likelihood computation can be significantly reduced. Let’s re-
call that, the calculation of the embedded Viterbi algorithm requires the calculation
of the Viterbi score of each row of a rectangular pattern given all the superstates
of the model, followed by the calculation of the Viterbi score for the overall top to
bottom structure. Hence, by taking advantage of the vertical overlap of the rectan-
gular patterns, the computation of the Viterbi algorithm for the horizontal sequences
extracted from the overlapping region can be saved. Furthermore, when the Viterbi
score is computed for an observation sequence corresponding to Wy, given all the
super states of the model, the partial likelihood is obtained for all the observation
sequences corresponding to 1 < Wy < Wj;. Since the minimum width of the faces
we wish to find is W,,, only scores for horizontal sequences corresponding to W7,
W < Wy < Wy are retained. The above observation is very important, because
it describes an efficient way to compute the likelihood of an horizontal observation

sequence extracted from a rectangular pattern of any width W, W, < Wy < Wy,
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given the super state of a face model. This allows, as will be explained in the next
paragraph, to obtain the face likelihood for a pattern of any size of interest, using the
same face model.

Using the super state probabilities of the horizontal observation sequences ob-
tained in the previous stage, the doubly embedded Viterbi score for the rectangular
patterns of any width W;, W,, < W, < W), and height H), is obtained by running
the Viterbi segmentation algorithm for the overall top-to-bottom structure of super
states. When the doubly embedded Viterbi score is computed for a rectangular pat-
tern of width W/, height H),,, and having the left top corner at (x,y), the likelihood
scores given the face models are implicitly computed for all rectangular patterns with
the same left top corner, width, and of any height H;, 1 < H; < Hy;. Given the
constraints of the system related to the height of the faces we wish to detect, only
patterns of height Hy, H,, < Hy < Hy; and Wy, < W; < W) are further considered.
The computation of the face likelihood for images from different scales using the same
face model is one very important advantage of this approach over the template based
and standard HMM based approaches. In template based approaches for each scale
of a rectangular pattern a new face template, at the same scale, has to be used to
determine the face likelihood score of the pattern. Although more flexible than the
template based approach, in standard HMM based approach for each width of the
rectangular pattern a new face model has to be trained. Unlike these methods, in our
approach, one embedded HMM can be used to compute the face likelihood of pat-
terns with significant scale variations. Considering the above discussions, the total
number of additions required to compute the doubly embedded Viterbi score for all

rectangular patterns in the test image is:

No
Num Adds = T,(T, —Tim)T1,m Z(ka))Q)
k=1

+ (Tm - Tl,m)(Ty - Tl,m)NgTO,M(TI,M - Tl,m)7 (63)

where Ty, T, and 1o ar, 1, s represent the size of the observation array correspond-

103



ing to the smallest H,, x W,, and respectively largest H,; x W), face of interest. The
above complexity does not include the calculations required to obtain the observa-
tion vectors. The detection time can be further decreased, by taking advantage of a
parallel implementation for the doubly embedded Viterbi algorithm, as discussed in
Chapter 5.
The accuracy of detection may be improved by including the state duration into
the overall top to bottom HMM. The duration d; of superstate ¢ is modeled using a
Poisson distribution [97] of parameter [;. It has been shown that the inclusion of the
states duration increases significantly the complexity of the system [62]. However, a
very simple and efficient method is to compute the face likelihood as follows,
- No
log P(O,q|\) =log P(O,q|)) + a > log p;(d;) (6.4)
i=1
where « is a constant that was set equal to 1000 in our experiments. The parameter
of the Poisson distribution for the super state duration is obtained in the training

part from the segmented data using

I number of observations in superstate ¢ (6.5)
' size of the observation sequence along vertical direction '

To deal with different scales of the images in the training and test sets, the Poisson

parameter is normalized to the integer value I; computed as follows

i = [l length of test sequence

6.6
average length of training sequence (6.6)

The likelihood scores obtained for the observation sequences corresponding to each
rectangular pattern are normalized by averaging the likelihood score over the size
of the array of the observation sequence. Next, the face likelihoods obtained for
each rectangular pattern in the image are compared to a threshold, and the patterns
that have likelihoods that exceed this threshold are candidate faces. It is natural
to expect that similar patterns will have similar likelihoods and, therefore, several

patterns around the actual face location will be declared to be candidate faces. In
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order to remove these “false alarms”, a candidate face represents a valid face location
if its likelihood is larger than the likelihoods of all face candidates within the vicinity.

This embedded HMM face detection system using both KLT and DCT based
observation vectors was tested on the MIT database in three experiments. The exper-
iments are similar to those described for the face detection using the standard HMM.
For the first experiment, a set of nine manually segmented images, from the MIT
database were used to train one face model. The detection system was tested on im-
ages of the same database, that contain frontal faces of the same width as those used
in training, but show significant variations in illumination. In the second and third
experiment, eight face models were trained using face images, with no background,
from the ORL database. The images used to train each embedded HMM are the
same as used by the 1ID-HMM based face detection system. The images tested in the
second experiment contain frontal faces of different sizes and different illumination
conditions. In the third experiment 432 images were tested. For this experiment the
test images include faces of different orientations (rotations in the image plane), sizes
(varying from 60 x 90 to 120 x 180) and taken under different illumination conditions.
The detection results (detection rate and false alarms) in these three experiments
are summarized in Table 6.3. The false alarms are reported to the total number of
rectangular patterns obtained from all the test images. Figure 6.10 shows some of
the detection results. As in the standard HMM based face detection system, the use
of KLT observation vectors instead of DCT observation vectors increases slightly the
detection rate. This is a result of the fact that the KLT basis functions are adapted
to face images while the 2D DCT basis function are general.

Compared with the template-based or standard HMM-based methods for face

detection our approach has the following advantages:

1. It is more flexible with respect to variations in scale, and natural deformations

in both vertical and horizontal direction.

2. Tt allows for an efficient implementation of the face detection algorithm due to
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Experiment 1 | Experiment 2 Experiment 3

DR FA DR FA DR FA
0 16 56
2D-DCT | 100% 426,187,008 91.7% 126,187,008 91.2% 1,278,561,024
0 7 43
KLT 100% 426,187,008 96.3% 126,187,008 91.5% 1,278,561,024

Table 6.3: Comparison of the detection rate (DR) and false alarms (FA) in different

experiments obtained using the embedded HMM

Figure 6.10: Face detection results using the embedded HMM

106



the breaking of the face templates or horizontal face bands (for the standard
HMM approach) into image blocks that are processed to obtain the observation
vectors. Unlike the standard HMM based approach in Chapter 4, in this ap-
proach the width of the blocks is not constrained to equal the width of the faces.
Therefore the face likelihood score for rectangular patterns with variations in

scale in both vertical and horizontal direction can be computed efficiently.

Furthermore compared to the HMM with end of line states, the embedded HMM for

face modeling proposed here has the following advantages:

1. It allows for better initial estimates for the training stage. The initial parameters
can be obtained by uniformly segmenting the data according to the structure

of states and super states of the embedded HMM,

2. Tt has better recognition results (the detection performance of the HMM with

end of line states were not tested),

3. It allows for a faster implementation for both detection and recognition due to
the reduced complexity of the doubly embedded Viterbi algorithm as shown in
Chapter 5,

4. Tt can be implemented using a parallel architecture, which will dramatically

reduce the complexity of both detection and recognition,

5. It preserves the two dimensional structure of the data without using end-of-line

states and blocks.
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CHAPTER 7

Conclusions, Contributions of Thesis and

Topics for Further Research

This chapter presents the conclusions of this thesis work, highlights the contributions

of this thesis, and gives general direction for further research.

7.1 Conclusions

The primary goal of this work is to consider the use of an HMM and an embedded
HMM for face detection and recognition. The use of an HMM for face modeling
is justified by both the flexibility of the HMM and by the structure of faces. As a
result of the theoretical aspects discussed in this work, and based on our experimental

results the following conclusions are drawn:

e Compared with the template-based methods for face detection and recognition,

a hidden Markov model for faces:

— Is more flexible with respect to variations in scale, natural deformations in

the vertical direction.

— Allows for a faster implementation of the face detection algorithm due
to the breaking of the face templates in short image blocks which are

processed to obtain the observation vectors.



— Although moderately successful for both detection and recognition, is out-
performed by some of the template based approaches. More training data

may help to improve the accuracy of this approach.

e The flexibility to scale and natural deformations of the face HMM refers only to
the vertical direction, but not to the horizontal direction. The embedded HMM
represents a more appropriate model for face images than the standard HMM

or templates.

— For face recognition the continuous mixture embedded HMM achieves the
best recognition rate reported on the ORL database, and shows perfect

recognition rate (100%).

— The embedded HMM is more flexible with respect to variations in scale
and natural deformations in both vertical and horizontal direction than

both template based and standard HMM based approaches.

— The embedded HMM allows for a faster implementation of the face de-
tection algorithm due to the breaking of the face templates or horizontal
face bands (for the standard HMM approach) in image blocks which are

processed to obtain the observation vectors.

e Compared to the HMM with end-of-line states (Figure 2.1-a), the embedded

HMM for faces has the following advantages:

— Allows for better initial estimates for the training stage. The initial pa-
rameters can be obtained by uniformly segmenting the data according to

the structure of states and super states of the embedded HMM,
— Has better recognition results,
— Allows for parallel implementation of the training, recognition or detection,

— Allows for a faster implementation for both detection and recognition,
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— Allows for parallel implementation of the decoding, evaluation and estima-

tion algorithms,

— Preserves the two dimensional structure of the data without using end-of-

line states and blocks.

7.2 Contributions of Thesis

A list of the original contributions of this thesis is listed below:

e A near real-time system for detection of human heads from a known background
has been developed. The system is able to segment the human heads and eyes
from gray scale sequences using some natural rules and a deformable template
of elliptical shape, track and select the best instance of the face over a sequence

of frames.

e The capabilities of a continuous one dimensional HMM for human face recog-
nition have been investigated. The size of the observation vectors has been
significantly reduced from the previous HMM-based system by using either the
DCT or KLT coefficients. The recognition rate was slightly improved while the

complexity was dramatically decreased.

e A new HMM-based face detection method from unknown background has been
developed. The face HMM used for detection uses the same efficient observation
vectors as used for recognition. The state duration model has been incorporated
in the HMM structure as a correction factor that is added to the face likelihood

score. The state duration modeling increased significantly the detection rate.

e The decoding, evaluation (forward and backward), and estimation algorithms
for the embedded HMM (Figure 5.2) have been studied. The evaluation and

estimation algorithms have been derived for both the discrete and continuous
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mixture embedded HMM. The complexity of the decoding and evaluation algo-
rithms have been determined. Finally the implementation issues related to all

these algorithms have been discussed.

e A new face recognition approach using the continuous and continuous mixture
embedded HMM has been developed. The observation vectors use an efficient
set of two-dimensional DCT coefficients. The training scheme includes the
decoding, evaluation, estimation algorithms as well as a variant of the segmental

K-means algorithm derived for the continuous mixture embedded HMM.

e A new face detection approach for face detection using the continuous and con-
tinuous mixture embedded HMM has been developed. The embedded HMM for
detection uses the same observation vectors as used for recognition. The state
duration modeling incorporated as an correction factor in the face likelihood

score has significantly improved the detection score.

7.3 Recommended Topics for Further Research

Based on the experiments and results presented in this work, we present some general

directions for future work in modeling faces using the embedded HMM.

e Increasing the number of images used in the training set will allow for more ro-
bust estimation of the model parameters and eventually increase the recognition
and detection rates of the system. Experiments on a larger face recognition and

detection database will provide results that are statistically more significant.

e It has been shown [61] that the initial parameters are very important for the
proper convergence of the training algorithm. As shown in Figure 6.4, a uniform
segmentation does not always provide initial parameters that correspond to

significant facial features. A more sophisticated face segmentation algorithm
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that may use adaptive segmentation algorithms [102], [103], [104] may provide
better initial estimates for the embedded HMM.

The use of discriminant observation vectors can provide not only a good repre-
sentation of all the blocks in an image but also a better discrimination among
blocks corresponding to different states of the model. These observation vectors

will provide a more robust estimation of the parameters of the model.

The use of color information, specially from the HSV space, has been shown
[33], [105], [77] to be effective in face detection. The inclusion of the color
information in the observation vectors should significantly improve both the

recognition and the detection systems.

The minimum recognition error criteria [106] for training provides better dis-
crimination between models to be trained. Unlike the maximum likelihood
training for the embedded HMM described in Chapter 5, the minimum recogni-
tion error training maximizes the “discrimination” among models. This training
technique is expected to improve both the detection rate, as an effect of better
separating face models from background models, and the recognition rate, as a

result of better discrimination among face models.

The inclusion of the background model will provide a more efficient face detec-
tion algorithm. It might also improve the accuracy of the face detection system,
especially if discriminant training or discriminant observation vectors are used.
The background model can be integrated with the face model in the form of a
background super state. For the embedded HMM, a Passing Token algorithm
[107], similar to those applied in continuous speech recognition can be applied
from the top to the bottom on the overall super state structure. However, the
background varies, in general, from image to image and, therefore, it is im-

possible to find a general background model. Thus the incorporation of the
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background model for face detection is appropriate only if it can be assumed

that the statistics of the background in an image are known.

e Eventually the embedded HMM based face detection and recognition systems
will be used in the overall face identification system described in Figure 1.1

and the performance of the system will be tested on video sequences.

7.4 Published Work

e Ara V. Nefian , and Monson H. Hayes III , “Hidden Markov Models for face de-
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The use of hidden Markov models (HMM) for faces is motivated by their partial
invariance to variations in scaling and by the structure of faces. The most significant
facial features of a frontal face include the hair, forehead, eyes, nose and mouth. These
features occur in a natural order, from top to bottom, even if the images undergo
small rotations in the image plane, and/or rotations in the plane perpendicular to the
image plane. Therefore, the image of a face may be modeled using a one-dimensional
HMM by assigning each of these regions to a state. The observation vectors are
obtained from the DCT or KLT coefficients.

A one-dimensional HMM may be generalized, to give it the appearance of a
two- dimensional structure, by allowing each state in a one-dimensional HMM to be
a HMM. In this way, the HMM consists of a set of super states, along with a set
of embedded states. Therefore, this is referred to as an embedded HMM. The super
states may then be used to model two-dimensional data along one direction, with the
embedded HMM modeling the data along the other direction.

Both the standard HMM and the embedded HMM were tested for face recogni-
tion and detection. Compared to other methods, our proposed system offers a more
flexible framework for face recognition and detection, and can be used more efficiently

in scale invariant systems.



