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ABSTRACT

The embedded Bayesian networks (EBN) introduced in this pa-
per, are a generalization of the embedded hidden Markov mod-
els previously used for face and character recognition. An EBN
is defined recursively as a hierarchical structure where the ”par-
ent” node is a Bayesian network (BN) that conditions the EBNs
or the observation sequence that describes the nodes of the ”child”
layer. With an EBN, one can model complex N-dimensional data,
avoiding the complexity of N-dimensional BN while still preserv-
ing their flexibility and partial scale invariance. In this paper we
present an application of the EBNs for face recognition and show
the improvement of this approach versus the ”eigenface” and the
embedded HMM approaches.

1. INTRODUCTION

The work presented in this paper is motivated by the need for prac-
tical statistical models with N-dimensional dependencies, in par-
ticular with two-dimensional dependencies used for image analy-
sis. While the hidden Markov models (HMM) are very success-
ful in speech recognition or gesture recognition where data depen-
dency is one-dimensional over time, an equivalent N-dimensional
HMM has been shown to be impractical due to its complexity that
grows exponentially with the size of the data [1]. For image recog-
nition, and in particular face recognition [2] were data is essen-
tially two-dimensional, template based approaches using principal
component analysis ( [3], [4]), linear discriminant analysis ( [5]),
neural networks ( [6], [7]), and matching pursuit [8] showed
improved results over the early geometric feature representations
( [9]). However, these approaches cannot generalize over a wide
variation in scale, orientation, or facial expression. In recent years,
several approaches to approximate a 2D HMM with computation-
ally practical models have been investigated such as the pseudo 2D
HMM or the embedded HMM used in character recognition [1] or
face recognition [10], [11]. These models significantly reduce the
error rate of the earlier HMM-based face recognition approaches
[11]. In [12], Jia and Gray developed an efficient approximation
for the training and recognition of the 2D HMM applied to text
image analysis. In this paper we introduce a family of embed-
ded Bayesian networks (EBN) and investigate their performance
for face recognition. The EBN generalize the embedded HMM by
allowing each HMM to be replaced by any arbitrary Bayesian Net-
work (BN). Specifically, we introduce a family of EBN that builds
on existing dynamic BN such as the HMM or the coupled HMMs
( [13]) and compare their face recognition performance with some
of the existing approaches.

2. THE COUPLED HIDDEN MARKOV MODEL

The coupled HMM (CHMM), can be seen as a collection of HMMs,
one for each data stream, where the discrete nodes at time t for
each HMM are conditioned by the discrete nodes at time t � 1
of all the related HMMs. Figure 1 illustrates a CHMM where
the squares represent the hidden discrete nodes while the circles
describe the continuous observable nodes. Let C be the number
of channels of a CHMM, and i = [i1; : : : ; iC ] be the state vec-
tor describing the state of the hidden nodes in channels 1; : : : ; C
qt = [q1t ; : : : q

C
t ] at one particular time instance t. The elements

of the coupled HMM are �c0(ic) = P (Oc
0jq

c
t = ic) the initial state

probability of state ic in channel c, acicjj = P (qct = icjqt�1 = j),
the state transition probability from state j to state ic in channel c,
and bct(ic) = P (Oc

t jq
c
t = ic) the observation likelihood give the

state ic in channel c.

Figure 1: A coupled hidden Markov model for image recognition.

3. A FAMILY OF EMBEDDED BAYESIAN NETWORKS

The embedded Bayesian network (EBN) is a hierarchical statistical
model consisting of several layers, each, with the exception of the
lowest layer, being defined by a set of EBN. The lowest layer con-
sists of a set of observation vectors. The parameters of each EBN
within the same layer are independent from each other, while their
parameters depend on their ”parent” EBN in the upper layer. The
EBN introduced in this paper for face recognition consists of two
layers, one layer for each data dimension. Each layer is described
by either a set of HMMs or a CHMMs, resulting in a family of four
EBNs shown in Figure 2: the embedded HMM (EHMM) where
both layers are described by HMMs, the HMM-CHMM where the
upper layer is an HMM and the lower layer consist of a set of
CHMMs , the CHMM-HMM where the upper layer is a CHMM
and the lower layer consists of a set of HMMs, and the embedded
CHMM (ECHMM) where both layers are described by CHMMs.
Since the HMM can be seen as a CHMM with one data stream, the
ECHMM is a generalization of all the models in its family. For the



purpose of simplicity this paper will only give the formal defini-
tion and describe the training algorithm for the most general model
of the family, namely the ECHMM. The formal definition of the
parameters of a two-layer ECHMM, given below, can be extended
to any number of layers. Throughout this paper we will refer to
the channels, nodes and states of the ”parent” CHMM as the super
channels, the super nodes, and the super statesof the ECHMM.
For simplicity assume that all CHMMs in layer l have the same
number of channels Cl. The elements of a two layer ECHMM are:

� the initial super state probability in super channel s = 1; : : : C0,
�s0;0

� the super state transition probability from the sequence of
states j = [j1; : : : jC0 ] to state is in super channel s, as0;isjj.

� for each super state k in the super channel s the parameters
of the corresponding CHMM are defined as follows:

– the initial state probability in channel c = 1; : : : C1,
�
s;k;c
1;0

– the state transition probability as;k;c1;icjj

– the observation probabilities bs;k;ct0;t1
(jc). In a contin-

uous mixture with Gaussian components, the proba-
bility of the observation vector O is given by:

b
s;k;c(jc) =

M
s;k;c

jX

m=1

w
s;k;c
j;m N(O; �s;k;cj;m ;U

s;k;c
j;m ) (1)

where �s;k;cj;m and Us;k;c
j;m are the mean and covariance

matrix of the mth mixture of the jth state in the cth
channel. M

s;k;c
j is the number of mixtures corre-

sponding to the jth state of the cth channel and the
weight ws;k;c

j;m is the corresponding mixture weight.

(a) (b)

(c) (d)

Figure 2: (a) The embedded HMM , (b) The HMM-CHMM struc-
ture , (c) The CHMM-HMM structure, (d)The embedded CHMM

4. THE OBSERVATION VECTORS

The observation sequence for an image is extracted from image
blocks of size Lx � Ly that are obtained by scanning the im-
age from left-to-right and top-to-bottom as illustrated in Figure

3. Adjacent image blocks overlap by Py rows in the vertical di-
rection, and Px columns in the horizontal direction. Specifically,
with blocks of Ly = 8 rows and Lx = 8 columns, we used six
2D-DCT coefficients (a 3 � 2 low-frequency array). The use of
2D-DCT coefficients instead of pixel values as observation vec-
tors is justified by the compression and decorrelation properties of
the 2D DCT transform for natural images. The resulting array of
observation vectors is of size T0 � T1, where T0 and T1 are the
number of observation vectors extracted from the height H and
width W of the image.

T0 =
H � Ly

Ly � Py
+ 1;

T1 =
W � Lx

Lx � Px
+ 1

Next consecutive horizontal and vertical observation vectors are

O O

O O

i, j i+m, j

i, j+n i+m, j+n

Figure 3: Face image parameterization and blocks extraction

grouped together in observation blocks. Throughout this paper we
will denote Ot0;s;t1;c as the t1th observation vector corresponding
to the cth channel within the observation block (t0; s).

5. THE OPTIMAL STATE SEQUENCE SEGMENTATION

The algorithm described in this section determines the optimal
state and super state segmentation of the observation sequence for
the ECHMM. This algorithm also referred to as the Viterbi algo-
rithm for ECHMM can be applied to all the members of the EBN
family discussed in this paper by setting the appropriate number of
channels and super channels. For simplicity, we describe here the
Viterbi algorithm for a two layer ECHMM.

� for each observation block (t0; s) we compute the Viterbi
algorithm for a HMM [14] or CHMM [15], given the super
state is of the super channel s. The best super state proba-
bility and the optimal state segmentation for the observation
block (t0; s) given the super state is of the super channel s
is denoted as Pt0;s(is) and �t0;s;t1;c(is) respectively.

� Initialization

Æ0;0(i) =
Y

s

�
s
0;0(is)Pt0;s(is)

 0;0(i) = 0

� Recursion

Æ0;t0(i) = max
j
fÆ0;t0�1(j)

Y

s

a
s
0;isjjs�1;js;js+1

Pt0;s(is)g

 0;t0(i) = argmax
j
fÆ0;t0�1(j)

Y

s

a
s
0;isjjs�1;js;js+1

Pt0;s(is)g



� Termination

P = max
i
fÆT0 (i)g

f�T0 ;1; : : : ; �T0;Sg = argmax
i
fÆT0 (i)g

� Backtracking

f�t0;1; : : : ; �t0;Sg =  0;t+1(�t0+1;1; : : : ; �t0+1;S)

q
0
t0;s;t1;c

= �t0;s;

q
1
t0;s;t1;c = �t0;s;t1;c(�t0;s);

In practice, to overcome the underflow problems and the large
number of multiplications, all of the above calculations can be
used in logarithm form. Table 1 compares the complexity of the
Viterbi search for a two-layer EBN withN0 andN1 states per node
for each of the BN in the upper and lower layer respectively and a
CHMM with N0N1 states . Together with a significantly smaller

Model Additions

CHMM (N0N1)
(2T0)T1T0

EBN N
2C1
1 N0T1T0 +N

2C0
0 T0

C0
C1

Table 1: A comparison of the complexity in terms of additions for
the CHMM and EBN

complexity the Viterbi algorithm for EBN can be computed in par-
allel, since the models of the lower level are independent one from
the others.

6. TRAINING

To train an EBN, the observation vectors are first extracted from
the images in the training set. Throughout this paper we will de-
note the membership to the rth example image in the training set
as super script (r). To train an EBN we proceed as follows:

1. At the first iteration, the array of observation blocks is uni-
formly segmented into S vertical channels, and the vectors
within each super channel are uniformly segmented accord-
ing to the number of super states in each channel. Next
the observation array within each observation block is seg-
mented uniformly according to the number of channels and
states of each ”child”. To initialize the mixture components,
the observation sequence assigned to each channel c, state
j, super state k, and super channel s are assigned toMs;k;c

j

clusters using the K-means algorithm.

2. At the next iteration, the uniform segmentation is replaced
by the optimal state segmentation algorithm described in
section 5. The mixture components in each state j and
super state k are determined by assigning the observation
O
(r)
t0;s;t1;c

, from the rth example in the training set, to the
Gaussian component for which the Gaussian density func-
tion N(O

(r)
t0;s;t1;c

; �s;k;cj;m ;Us;k;c
j;m ) is highest.

3. The model parameters are then estimated using an exten-
sion of the segmental k-means algorithm.
Specifically, the estimated transition probabilities between
super states ~as0;isjj are obtained as follows

~as0;isjj =

P
r

P
t0

P
t1
�
(r)
t0

(s; is; j)
P

r

P
t0

P
t1

P
l
�
(r)
t0

(s; is; l)

where �(r)t0
(s; is; l) is one if a transition from state sequence

l to the super state is in super channel s occurs for the ob-
servation block (t0; s) and zero otherwise.
The estimated transition probabilities between the embed-
ded states ~as;k;c

1;icjj
are obtained as follows,

~as;k;c1;icjj
=

P
r

P
t0

P
t1
�
(r)
t0;t1

(s; k; c; ic; j)
P

r

P
t0

P
t1

P
l
�
(r)
t0;t1

(s; k; c; ic; l)

where �(r)t0;t1
(s; k; c; ic; l) is one if in the observation block

(t0; s) a transition from state j to state ic in channel c occurs
for the observation O

(r)
t0;s;t1;c

, and zero otherwise. The es-

timated mean ~�s;k;cj;m , the covariance ~Us;k;c
j;m of the Gaussian

mixture, and the mixture coefficients ~ws;k;c
j;m for mixture m

of state j in super state k are obtained as follows:

~�s;k;cj;m =

P
r;t0;t1

 
(r)
t0;t1

(s; k; c; j;m)O
(r)
t0;s;t1;cP
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(r)
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P
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t0;t1
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t0;s;t1;c � ~�s;k;cjm )(O

(r)
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� ~�s;k;cj;m )T

P
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(r)
t0;t1
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~ws;k;c
j;m =

P
r;t0;t1

 
(r)
t0;t1

(s; k; c; j; m)
P

r;t0;t1

PM

m=1
 
(r)
t0;t1

(s; k; c; j;m)

where  (r)t0;t1
(s; k; c; j;m) is equal to one if the observation

O
(r)
t0;s;t1;c

, is assigned to super state k in super channel s,
state j in channel c and mixture component m, and zero
otherwise.

4. If the observation likelihood computed with the Viterbi al-
gorithm at consecutive iteration is smaller than a specified
threshold, then the iteration stops and the parameters of the
trained model are saved. Otherwise, steps 2-4 are repeated.

7. FACE RECOGNITION

With the parameters of one EBN trained for each face in the database,
the face recognition begins with the extraction of the observation
vectors from a test face image, as described in Section 4. Then,
the likelihood of optimal state segmentation is computed (Section
5) for the test observation sequence given each of the trained mod-
els. Finally, the highest matching score between the observation
sequence and the trained models reveals the identity of the test im-
age. In our experiments all HMM and CHMM in the lower layer
have six states, and three states per channel respectively. For the
”parent” layer the HMM and CHMM have five states per channel.
All states are modeled using a mixture of three Gaussian pdf with



diagonal covariance matrix. In order to reduce the computational
complexity of the EBN, all CHMM used in our experiments have
two channels. We have tested the EBN-based face recognition sys-
tem on the Georgia Tech database [16]. The database consists of
50 people with 15 face images available for each person. For most
of the people the pictures were taken in two or three sessions over
a period of three months, allowing for strong variation in size, fa-
cial expression, illumination, and rotation in both the image plane
and perpendicular to the image plane. Table 2 compares the recog-
nition rates obtained in our experiments training each EBN with
10 images per person and testing on the remaining five. On the
same database the face recognition system based on the ”eigen-
face” method [3] achieved 68% correct recognition. The above

Model Recognition Rate

EHMM 87.0%
HMM-CHMM 89.0%
CHMM-HMM 92.2%
ECHMM 91.5%

Table 2: A comparison of the face recognition rates for the
EHMM, HMM-CHMM, CHMM-HMM and ECHMM

table indicates that the CHMM-HMM structures achieve the high-
est recognition rate, but the relatively small amount of data and the
small improvement over the ECHMM cannot draw a clear con-
clusion as to which of these models is best for face recognition.
However, our results show that using a CHMM in the parent layer
can improve the recognition rate of the EBNs that use a HMM in
the ”parent” layer, as in addition to the flexibility of the latter, the
first structures can better model rotations in the image plane. The
computational complexity of the models used in this paper is dom-
inated by the calculation of the observation probabilities which is
similar in all models. However, for models that include CHMM
with larger number of channels the computational complexity is
determined by the Viterbi algorithm as described in Table 1.

8. CONCLUSIONS

The EBN, represent a novel statistical model with several appli-
cation in the analysis and modeling of data with N dimensional
dependencies. In this paper we describe a training and recognition
algorithm for the EBN derived from the optimal state segmenta-
tion. In particular an EBN with two layers can be applied to image
recognition problems such as face recognition or character recog-
nition where data is essentially two-dimensional. Our experimen-
tal results in face recognition show that the members of the EBN
family described in this paper outperform some of the existing ap-
proaches such as the eigenface method and the embedded HMM
method (also a member of the EBN family). The EBN for faces
inherits the flexibility of the HMM and CHMM in terms of natural
face variations, scaling, and rotations, while significantly reducing
the complexity of the fully connected 2D HMM. In addition, as ex-
plained in Section 5 the likelihood of the optimal states segmenta-
tion for EBN can be efficiently implemented on parallel machines.
We consider that the success of the EBN in face recognition and
their general representation can inspire more applications of EBN
in other areas of image recognition and in general pattern recogni-
tion.
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